Single Edge Notched Shear Test (SENS)¹⁶

Figure: Geometry and boundary conditions of the single edge notched shear test.

Parameter	Value
λ	121.15kN/mm ²
μ	80.77kN/mm ²
ν	0.3
G _c	2.7N/mm
h	0.044mm
e	0.044mm
δt	10^{-4} s
I	0.036s
к	10 ⁻¹⁰

Table: Settings of the material and numerical parameters for the single edge notched shear test.

¹⁶C. Miehe, M. Hofacker and F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Computer Methods in Applied Mechanics and Engineering, Elsevier 199/45-48 (2010): 2765-2778.

$\nu \rightarrow 0.5 \text{ SENS}$

ν	μ	λ
0.3	$80.77\cdot 10^3$	$121.15\cdot 10^3$
0.49	$80.77\cdot 10^3$	$395.77\cdot 10^4$
0.499	$80.77\cdot 10^3$	$403.04\cdot 10^5$

Table: Tests with different Poisson's ratios.

ν	min. #DoF	max. #DoF
0.3	11,829	158,759
0.49	46,181	192, 573
0.499	46, 181	189,554

Table: The minimal and maximal number of degrees of freedom on the adaptive meshes.

Figure: Load-displacement curves.

L-Shaped Panel Test¹⁷

Parameter	Value
λ	6.16kN/mm ²
μ	10.95kN/mm ²
ν	0.18
Gc	$8.9 imes 10^{-5} kN/mm$
h	7.289mm
e	14.0mm
δt	10^{-3} s
I	0.4s
κ	10-10

Figure: Geometry and boundary conditions of the L-shaped panel test.

Table: Standard settings of the material and numerical parameters for the L-shaped panel test.

¹⁷ B. J. Winkler, Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes für Beton, Innsbruck University Press (2001).

$\nu \rightarrow 0.5$ L-shaped Panel Test

ν	μ	λ
0.18	$10.95\cdot 10^3$	$6.18\cdot 10^3$
0.4	$10.95 \cdot 10^3$	$42.36\cdot 10^3$
0.49	$10.95\cdot 10^3$	$51.89\cdot 10^4$

Table: Tests with different Poisson's ratios.

ν	min. #DoF	max. #DoF
0.18	13,765	46, 376
0.4	13,765	44, 744
0.49	13,765	46,747

Table: The minimal and maximal number of degrees of freedom on the adaptive meshes.

Figure: Load-displacement curves.

Phase-field Function for $\nu = 0.18$

Figure: The phase-field function after three adaptive refinement steps in incremental step 0.236, 0.243, 0.255, 0.276, 0.307 and 0.4s on the current adaptive mesh.

Phase-field Function for $\nu = 0.49$

Figure: The phase-field function after three adaptive refinement steps in incremental step 0.32, 0.33, 0.336, 0.37, 0.394 and 0.4s on the current adaptive mesh.

Remarks

- L-shaped panel test originally done with concrete
- Single edge notched shear test originally done with Poisson's ratio $\nu = 0.3$
- Assumption of our model: linear elasticity
- Contradiction: nearly incompressible materials as rubbers allow large deformations
- We just increased the Poisson's ratio, what's about the critical energy release rate and the Young's modulus?

Remarks

- L-shaped panel test originally done with concrete
- Single edge notched shear test originally done with Poisson's ratio $\nu = 0.3$
- Assumption of our model: linear elasticity
- Contradiction: nearly incompressible materials as rubbers allow large deformations
- We just increased the Poisson's ratio, what's about the critical energy release rate and the Young's modulus?
- Again: we are happy to get your input and discussions!

- 1 Motivation and problems
- 2 Attempts in verification Some positive attempts A still questionable test
- 3 Phase-field fracture model and numerical modeling A posteriori error estimation and mesh adaptivity
- 4 A phase-field fracture model for nearly incompressible solids Modeling Numerical tests
- 5 Further validation attempts Collaboration with DIK (German Kautschuk Institute)

Collaboration with OR^{18}

- ⇒ Compare experimental and numerical results of crack propagation
- Sulphur crosslinked EPDM (Ethylen-Propylen-Dien-Kautschuk; Keltan 2450: type of the Kautschuk) filled with 60 phr (parts per hundred parts of rubber) carbon black *N*550
- Nearly incompressible ($\nu \approx 0.4999$)

Figure: Geometry of the elastomer plate. The sample is fixed on the top boundary and we pull on the bottom boundary.

Figure: Setup of the experiment.

¹⁸ N. H. Kröger, Deutsches Institut für Kautschuktechnologie e.V., Hannover.

Setup for the numerical simulations

G _c	Critical energy release rate	0.97 N/mm
λ	Lamé's first parameter	2369 N/mm ²
μ	Shear modulus	1.22 N/mm ²
ν	Poisson's ratio	0.4999

Figure: Setting of the material parameters evaluated via separated experimental tests used for running the numerical tests.

Some current results of the crack paths

Figure: Crack paths in punctured EPDM strips compared to the FEM simulation with a given notch at 6, 12 and 18mm measured from the bottom boundary.

• These results show that our current model seems to have some applicability for treating nearly-incompressible solids!

Thomas Wick (LUH)

- 1 Motivation and problems
- 2 Attempts in verification Some positive attempts A still questionable test
- 3 Phase-field fracture model and numerical modeling A posteriori error estimation and mesh adaptivity
- 4 A phase-field fracture model for nearly incompressible solids Modeling Numerical tests
- 5 Further validation attempts Collaboration with DIK (German Kautschuk Institute)

Conclusions

- Some successes and shortcomings of our proposed variational phase-field fracture models
- A numerically stable phase-field model for nearly incompressible fracture
- Numerical advancements in deriving a posteriori error estimates used for local mesh adaptivity. In ongoing work also useful for solver control and multiple goal functional evaluations

Conclusions

- Some successes and shortcomings of our proposed variational phase-field fracture models
- A numerically stable phase-field model for nearly incompressible fracture
- Numerical advancements in deriving a posteriori error estimates used for local mesh adaptivity. In ongoing work also useful for solver control and multiple goal functional evaluations

Key references of this talk

- T. Heister, M.F. Wheeler, T. Wick; CMAME, 2015;
- D. Wick, T. Wick, R.J. Helmig, H-J. Christ; Comput. Mater. Sci July 2015;
- T. Wick; Comp. Mech, 2016;
- K. Mang, T. Wick, W. Wollner; Comp. Mech., 2020.

Conclusions

- Some successes and shortcomings of our proposed variational phase-field fracture models
- A numerically stable phase-field model for nearly incompressible fracture
- Numerical advancements in deriving a posteriori error estimates used for local mesh adaptivity. In ongoing work also useful for solver control and multiple goal functional evaluations

Key references of this talk

- T. Heister, M.F. Wheeler, T. Wick; CMAME, 2015;
- D. Wick, T. Wick, R.J. Helmig, H-J. Christ; Comput. Mater. Sci July 2015;
- T. Wick; Comp. Mech, 2016;
- K. Mang, T. Wick, W. Wollner; Comp. Mech., 2020.

Thanks for attending my talk!