Single Edge Notched Shear Test (SENS) 16
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Table: Settings of the material and
Figure: Geometry and boundary numerical parameters for the single edge
conditions of the single edge notched notched shear test.

shear test.

16C. Miehe, M. Hofacker and F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator

splits, Computer Methods in Applied Mechanics and Engineering, Elsevier 199/45-48 (2010): 2765-2778.
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Figure: Load-displacement curves.



L-Shaped Panel Test!”

500mm

Parameter Value
y Top
A 6.16kN/mm?
" 10.95kN/mm?
250mm v 018
Ge 89 x 1079kN/mm
500mm h 7.289mm
TT € 14.0mm
Ty ot 1073
30mm
T 0.4s
K 10-10
— x Table: Standard settings of the material
'mm .
and numerical parameters for the
Figure: Geometry and boundary L-shaped panel test.
conditions of the L-shaped panel test.
17B. J. Winkler, Tr h von ten und bewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes fiir Beton,

Innsbruck University Press (2001).
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Phase-field Function for v = 0.18

Figure: The phase-field function after three adaptive refinement steps in incremental
step 0.236,0.243, 0.255, 0.276, 0.307 and 0.4s on the current adaptive mesh.




Phase-field Function for v = 0.49

Figure: The phase-field function after three adaptive refinement steps in incremental
step 0.32,0.33, 0.336, 0.37, 0.394 and 0.4s on the current adaptive mesh.




Remarks

L-shaped panel test originally done with concrete

Single edge notched shear test originally done with Poisson’s ratio
v=203

Assumption of our model: linear elasticity

Contradiction: nearly incompressible materials as rubbers allow large
deformations

We just increased the Poisson’s ratio, what’s about the critical energy
release rate and the Young’s modulus?
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Again: we are happy to get your input and discussions!



5 Further validation attempts
Collaboration with DIK (German Kautschuk Institute)



Collaboration with ¢2?18

= Compare experimental and numerical results of crack propagation

o Sulphur crosslinked EPDM (Ethylen-Propylen-Dien-Kautschuk; Keltan 2450: type of
the Kautschuk) filled with 60 phr (parts per hundred parts of rubber) carbon black N550

e Nearly incompressible (v ~ 0.4999)

d = 8.0mm

2.8cm
slit

—
2.0cm

Figure: Geometry of the elastomer
plate. The sample is fixed on the top

boundary and we pull on the bottom Figure: Setup of the
boundary. experiment.
18

N. H. Kroger, Deutsches Institut fiir Kautschuktechnologie e.V., Hannover.



Setup for the numerical simulations

d = 8mm
28mm
notch
Vv - - \L
20mm
Gc | Critical energy release rate 0.97 N/mm
Lamé’s first parameter 2369 N/mm?
Shear modulus 1.22 N/mm?
v | Poisson’s ratio 0.4999

Figure: Setting of the material parameters evaluated via separated experimental tests
used for running the numerical tests.



Some current results of the crack paths

6mm -- _
12mm ! w
" ll u._—

18mm

Figure: Crack paths in punctured EPDM strips compared to the FEM simulation with

a given notch at 6,12 and 18mm measured from the bottom boundary.

e These results show that our current model seems to have some
applicability for treating nearly-incompressible solids!

Thomas Wick (LUH) Under ding nearly-incompressible fracture




6 Conclusions
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* Some successes and shortcomings of our proposed variational
phase-field fracture models

* A numerically stable phase-field model for nearly incompressible
fracture

* Numerical advancements in deriving a posteriori error estimates used
for local mesh adaptivity. In ongoing work also useful for solver control
and multiple goal functional evaluations
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Thanks for attending my talk!
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