
Euler-Lagrange system

Formulation
Define V := H1

0(B), Win := {w ∈ H1(B)|w ≤ ϕold ≤ 1 a.e. on B}, and W := H1(B). For the
loading steps n = 1, 2, 3, . . .: Find vector-valued displacements and a scalar-valued phase-field variable
(un, ϕn) := (u, ϕ) ∈ {uD + V} ×W such that((

(1− κ)ϕ2 + κ
)

σ(u), e(w)
)
= 0 ∀w ∈ V, (1)

and
(1− κ)(ϕ σ(u) : e(u), ψ−ϕ)

+ Gc

(
− 1

ε
(1− ϕ, ψ−ϕ) + ε(∇ϕ,∇(ψ− ϕ))

)
≥ 0 ψ ∈ Win ∩ L∞(B)

(2)

Therein, ε, κ > 0 and κ = o(ε), and Gc is the critical energy release rate. Moreover,

σ := σ(u) = 2µe(u) + λ tr(e(u))I.

Here, µ and λ are material parameters, e(u) = 1
2 (∇u +∇uT) is the strain tensor, and I the identity

matrix.
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Active set solution algorithm as a combined Newton
solver 7

At time tn:
For k = 0, 1, 2, . . .
repeat

Assemble residual R(Uk)
Compute active set Ak = {i | (B−1)ii(Rk)i + c(δUk)i > 0}
Assemble matrix G = ∇2Eε(Uk)δUk and right-hand side F = −∇Eε(Uk)

Eliminate rows and columns in Ak from G and F to obtain G̃ and F̃
Solve the linear system with GMRES and block-diagonal preconditioning

Ã′(Uk)(δUk, Ψ) = −Ã(Uk)(Ψ) ∀Ψ ∈ V×W

Find a step size 0 < ω ≤ 1 using line search to get

Uk+1 = Uk + ωδUk,

with R̃(Uk+1) < R̃(Uk).
until Stopping criterium:

Ak+1 = Ak and R̃(Uk) < TOL .

• Primal-dual active set can be related to a semi-smooth Newton method (super-linear
convergence)6

6Hintermüller/Ito/Kunisch; SIAM Journal on Optimization, 2002
7Heister, Wheeler, Wick; CMAME (2015)
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1 Motivation and problems
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Some positive attempts
A still questionable test

3 Phase-field fracture model and numerical modeling
A posteriori error estimation and mesh adaptivity

4 A phase-field fracture model for nearly incompressible solids
Modeling
Numerical tests

5 Further validation attempts
Collaboration with DIK (German Kautschuk Institute)
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Enhancing accuracy and efficiency

• Parallel computing

• Heuristic adaptivity (for instance the previously predictor-corrector):
ONLY mesh refinement, NO error estimation!

• A posteriori error estimation

• Residual-based estimators

• Goal-oriented estimators: extremely interesting since specific target
functionals (quantities of interest QoI) can be observed

→ Extract local error indicators for mesh refinement and adaptive solver
control
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Predictor-corrector mesh adaptivity

• Only mesh adaptivity, but no error estimation

• Designed for problems with moving interfaces or moving discontinuities

Why?

• Problem 1: in fracture propagation the crack path is a priori unknown

• Problem 2: Relationship between h and ε (see also our simplified
numerical analysis). For a given (small) ε, propagating fracture(s) might
violate the condition ε > h. Do not change ε during a computation since
this would change the entire model.

⇒ Predictor-corrector mesh adaptivity:

1 Predict the future crack path (solid discontinuity)

2 Redo the computation and correct the solution
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Predictor-corrector mesh adaptivity

• J(U) = ϕ < c with c = 0.5 for
example.

• The key challenge is the relation
of the model regularization
parameter ε and the spatial mesh
size h (high mesh resolution
required!) since h < ε.

• Wish: Fix a (very) small ε during
the entire computation.

→ Predictor-corrector mesh
adaptivity with hanging nodes
(the mesh grows with the
fracture).

Figure: Predictor-corrector scheme: 1.
advance in time, crack leaves fine mesh. 2.
refine and go back in time (interpolate old
solution). 3. advance in time on new
mesh. Repeat until mesh doesn’t change
anymore. Refinement is triggered for
ϕ < C = 0.2 (green contour line) here.
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Adaptive refinement via residual-based estimator
• Improve the quality of the solution for given

computational resources

• Resolve the transition zone (between ϕ = 0 and
ϕ = 1)

• Resolve the fracture tip

• No overrefinement in full-contact zone
(ϕn = ϕn−1)

⇒ Residual-based a posteriori error estimator of the variational inequality8, 9

• Containing interior, jump and complementarity residuals

• Providing a robust upper bound of the error measure and local lower
bounds

• Used for an optimized refinement strategy

8M. Walloth, Residual-type A Posteriori Estimators for a Singularly Perturbed Reaction-Diffusion Variational Inequality – Reliability, Efficiency and Robustness.,
Preprint 2018, arXiv No. 1812.01957.

9K. Mang, M. Walloth, T. Wick, W. Wollner; GAMM-Mitteilungen 2019
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Residual-based a posteriori error estimator

Error estimator

η :=
4

∑
k=1

ηk

with (p denotes the node) αp := minx∈ωp

{
Gc
ε + (1− κ)(σ+(un

h ) : Elin(un
h ))
}

, and hp := diam(ωp) and

η1 :=

 ∑
p∈N\NfC

η2
1,p


1
2

, η1,p :=min

 hp√
Gcε

, α
− 1

2
p

 ‖r(ϕh)‖ωp ,

η2 :=

 ∑
p∈NI\NfC

η2
2,p


1
2

, η2,p :=min

 hp√
Gcε

, α
− 1

2
p


1
2
(Gcε)

− 1
4 ‖Gcε[∇ϕh ]‖γI

p
,

η3 :=

 ∑
p∈NΓ\NfC

η2
3,p


1
2

, η3,p :=min

 hp√
Gcε

, α
− 1

2
p


1
2
(Gcε)

− 1
4 ‖Gcε∇ϕh‖γΓ

p
,

η4 :=

 ∑
p∈NsC

η2
4,p


1
2

, η4,p :=

(
sp
∫

ω̃p
(Inh ϕn−1

h − ϕh)ϕp dx

) 1
2

.
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Residual-based A Posteriori Error Estimator 10

Proposition

For linear (bilinear) finite elements, the above error estimator η for the phase-field
variable ϕ is robust and efficient. (Some technical issues are included!)
It detail:

1 Robustness/reliability: ‖ϕ− ϕh‖ ≤ c2 η, where c2 > 0

2 Efficiency: c1 η ≤ ‖ϕ− ϕh‖, where c1 > 0

In words: if both estimates are fulfilled that we can guarantee that the estimator
approximates the true error.

10K. Mang, M. Walloth, T. Wick, W. Wollner; GAMM-Mitteilungen 2019
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Goal-oriented error estimation using duality
arguments 11

• So far only mesh refinement around the crack or global norms based on
residual-based estimation ...

• ... but often our goal measurements are somewhere else located

• Such quantities can be of technical nature such as stresses,
displacements, point values.

• These can be formulated in terms of a goal functional J(·).

• We restrict our attention to:

|J(U)− J(Uε,h)| ≤ |J(U)− J(Uε)|+ |J(Uε)− J(Uε,h)|

11Becker/Rannacher; Acta Numerica, 2001
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Ingredients
• Define a goal functional J(u):

J(u) = u(x0, y0), J(u) =
∫

Γ
σ(u) · n dx, or J(ϕ) =

∫
Γ

ϕ ds,

or a global norm.
• Key idea: Formulate a minimization problem (recall Uε = {uε, ϕε})

min(J(Uε)− J(Uε,h)) s.t. A(Uε)(Ψ) = 0 (PDE)

• Define the Lagrangian (as in optimization):

L(Uε, λ) = (J(Uε)− J(Uε,h))−A(Uε)(λ)

• Differentiating the Lagrangian yields the optimality system for U (adjoint problem) and
λ (primal problem)

• The adjoint problem will yield sensitivity measures that are then used for error
estimation (dual-weighted residuals - DWR)

• To localize the error estimator to obtain indicators for refinement, keep the weak form
(in contrast to the classical method) and add a partition-of-unity (PU)
(There is another weak form localization using special interpolation and patched
meshes by Braack/Ern; 2003)
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PU-DWR12 for goal functional evaluations

Proposition (DWR phase-field fracture (Wick, 2016))
For the finite element approximation of the phase-field fracture problem, we have the a posteriori error
estimate

|J(U)− J(Uh)| ≤ η(uh) :=
N

∑
i=1
|ηi|

with

ηi = (f , (z− ihz)ψi)− a(U, (Z− ihZ)ψi)

= (f , (zu − ihzu)ψi)−
(
[(1− κ)ϕ2 + κ]µ∇u,∇((zu − ihzu)ψi)

)
−
(
(1− κ)ϕµ|∇u|2, ((zϕ − ihzϕ)ψi)

)
+ (

GC
ε
(1− ϕ), ((zϕ − ihzϕ)ψi))

− (GCε∇ϕ,∇((zϕ − ihzϕ)ψi))

+ γ([ϕ− ϕ0]+, ((zϕ − ihzϕ)ψi))

Here U = (u, ϕ) and Z = (zu, zϕ).

12Richter/Wick, JCAM, 2015
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Numerical results13

Top: point functional
evaluation in the slit
domain (but the slit is not
given in the geometry but
through phase-field).

Bottom: Sneddon’s test
(elasticity with a given
pressure p) and computa-
tion of the normal stress
on the top boundary∫

Γ σ(u) · n ds.

In both computations the
crack tip is also refined -
as expected.
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13T. Wick; Comp. Mech, 2016
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Software

• Open-source C++ programming codes

• deal.II: differential equations analysis library, www.dealii.org

• DOpElib: Differential and optimization environment library,
www.dopelib.net

• T. Heister, T. Wick: Variational phase-field fracture template:
primal-dual active set solver for crack irreversibility and adaptive
mesh refinement and high-performance parallel computing
(Heister/Wick, 2018, PAMM):

https://github.com/tjhei/cracks

Thomas Wick (LUH) Understanding nearly-incompressible fracture 33



1 Motivation and problems

2 Attempts in verification
Some positive attempts
A still questionable test

3 Phase-field fracture model and numerical modeling
A posteriori error estimation and mesh adaptivity

4 A phase-field fracture model for nearly incompressible solids
Modeling
Numerical tests

5 Further validation attempts
Collaboration with DIK (German Kautschuk Institute)

6 Conclusions

Thomas Wick (LUH) Understanding nearly-incompressible fracture 34



Difficulties for (nearly) incompressible solids

• Nearly incompressible means νs → 0.5 yielding λ→ ∞

• Standard Galerkin approaches yield large approximations errors
(locking!)

• Solutions:

1 DG

2 Higher-order methods

3 Mixed methods

• We adopt a mixed approach in the following

⇒ Novel for phase-field fracture type approaches
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Modeling choices and assumptions

• We take the Euler-Lagrange PDE system and formulate a mixed system
to deal with (nearly) incompressible solids

• No attempt or claim that this system Γ converges to some limit for ε→ 0

• No attempt or claim that an energy variational principle is fulfilled!

→ ε fixed!

• Questions in which we were rather interested at this stage:

• Can we proof that the inf-sup condition does hold for this system?

• Based on this system, can be develop a robust numerical discretization?

• Do we obtain anything useful out of this model?

• We are happy to get your input and discussions!
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Fracture Model in Mixed Form
One approach to avoid locking is a mixed problem formulation with penalty
term:

p =: λ∇ · u with p ∈ U := L2(Ω).

Phase-field fracture problem in mixed form 14:

Find u ∈ V , p ∈ U and ϕ ∈ K ⊂ W such that

(g(ϕ)2µ(Elin(u) + p I), Elin(w)) = 0 ∀w ∈ V ,

(∇ · u, q)− 1
λ
(p, q) = 0 ∀q ∈ U ,

(1− κ)(ϕ2µElin(u) + p I : Elin(u), ψ− ϕ) + Gc(−
1
ε
(1− ϕ), ψ− ϕ)

+Gcε(∇ϕ,∇(ψ− ϕ)) ≥ 0 ∀ψ ∈ K.

14K. Mang, T. Wick, W. Wollner, Comp. Mech., 2019.
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inf-sup condition for the solid 15

We introduce the following bilinear forms:

aϕ(u, w) := (g(ϕ)Elin(u), Elin(w)),

bϕ(w, p) := (g(ϕ)∇ ·w, p),

cϕ(p, q) := (g(ϕ)p, q).

A compact bilinear form is summing up the single terms from before:

Aϕ(u, p; w, q) := 2µaϕ(u, w) + bϕ(w, p) + bϕ(u, q)− 1
λ

cϕ(p, q).

Assume g(0) = κ > 0 and let the bilinear form be V-elliptic. Then it holds the
inf-sup condition

inf
(u,p)∈(V×U )

sup
(w,q)∈(V×U )

Aϕ(u, p; w, q)
(u, p) · (w, q)

≥ β > 0,

with β independent of λ and g(ϕ), assuming that 0 ≤ 1
λ ≤ 1 and g(ϕ) ≥ κ.

15V. Girault, P.A. Raviart, Finite element methods for Navier-Stokes equations: theory and algorithms, Springer Science (2012).
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