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Motivation (I)
Baseline:

• Numerous studies in calculus of variations and engineering on
variational approaches (phase-field) for fracture (Francfort/Marigo,
1998; Bourdin/Francfort/Marigo, 2000/2008; Bourdin 2007; Chambolle
at al. 2008; Amor et al. 2009; Miehe/Hofreither/Welschinger, 2010/2010;
Burke/Ortner/Süli, 2010, ...)

• Some are qualitatively useful; but quantitative studies are rarely about to
find ... in particular in few of nearly-incompressible solids (see also talks
from yesterday L. Anand and O. Lopez-Pamies)

• Classical numerical tasks such as h→ 0 often yield non-satisfactory
findings. Why?

→ interaction with several regularization parameters (phase-field, crack
irreversiblity, ...)

→ various solid mechanics models for energy (stress) splittings (Amor et al.
2009; Miehe et al. 2010; Zhang et al. 2017; Strobl/Seelig, 2015;
Steinke/Kaliske, 2019; Bryant/Sun, 2018; Freddi/Royer-Carfagni, 2011,
...)

Thomas Wick (LUH) Understanding nearly-incompressible fracture 4



Motivation (II)

Before we address nearly-incompressible materials,
we briefly review some of our results for compressible solids.
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A positive example: Sneddon’s 2D/3D stationary
pressurized fracture

ε

ϕ = 0

ϕ = 1

Figure: Fracture representation using the phase field ϕ. The inner blue region
indicates the crack with ϕ = 0 and the red region indicates the unbroken zone where
ϕ = 1. We have a diffusive zone in between (green region).

• Analytical derivations in Sneddon/Lowengrub 1969, Section 2.4 (2D), Section 3.3 (3D);
fracture does not propagate but only varies in its width;

• Goal: Compute a goal functional value. Let’s say the total volume of the fracture. Is it
possible to obtain numerically computed values that coincide for h→ 0 with
manufactured solutions? (Standard task in numerics!)
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Sneddon’s 2D/3D pressurized fracture: challenges

• No. 1: Phase-field smears out the fracture;

• No. 2: It is crucial how ϕ is initialized;

• No. 3: It is crucial how ε− h is chosen;

• No. 4: Moreover, very, very fine meshes around the crack path are
necessary! (Adaptive mesh refinement).
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2D results for TCV (total crack volume): error w.r.t.
manufactured solution 1

• Total crack volumes:

TCVh,ε =
∫

Ω
u · ∇ϕdx,

TCV2d =
∫

x
2uy(x)dx =

2πpl20(1− ν2)

E
,

TCV3d =
∫

x

∫
y

2uz(x, y)dxdy =
16pl30(1− ν2)

3E

where l0 = 1.0, E = 1.0,
p = 1e− 3, ν = 0.2.
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10x10 5.6942E-03 5.60%
20x20 5.9393E-03 1.53%
40x40 6.0014E-03 0.51%
80x80 6.0383E-03 0.11%

Ref. 6.0319E-03

1Heister/Wick; 2018, PAMM; see also Bourdin et al. 2012, SPE
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Length-scale refinement
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Figure: Linear convergence in the length-scale ε.
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3D results for TCV
ref 10l0/h # DoFs eps TCV Error

1 2 500 1.7321E+01 7.4519E-02 1355.44%
...
8 256 946,852 1.3532E-01 5.8082E-03 13.44%
9 512 2,938,012 6.7658E-02 5.3764E-03 5.01%

10 1024 9,318,916 3.3829E-02 5.2131E-03 1.82%
11 2048 30,330,756 1.6915E-02 5.1567E-03 0.72%
12 4096 100,459,828 8.4573E-03 5.1352E-03 0.30%

Sneddon (exact) 5.1200E-03
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Parallel scalability for Sneddon’s 2D test 2

• Single fracture

• Pressure force acts on fracture boundaries

• Local mesh refinement

• Parallel computing

NP
ref Dofs 16 32 64 128 256 512 1024 2048

5 198’147 19 19 19 18 18 18 17 19
6 789’507 24 23 25 24 25 23 24 23
7 3’151’875 33 27 29 28 27 27 25 37
8 12’595’203 - - 31 31 33 32 30 32
9 50’356’227 - - 43 43 44 48 40 52

Table: Number of GMRES iterations of a single Newton step for the Sneddon 2d test
with global refinement. Iterations are nearly independent of problem size (h) and
number of processors NP. The relative residual is 1e-8.

2Heister/Wick; PAMM, 2018
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Second example: damage and fatigue of screws (I)

Figure: Industrial collaboration: Uniaxial tension and crack nucleation at points with
highest stresses. Experimental data from D. Wick (EJOT, Germany).
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Damage and fatigue of screws (II) 3

Figure: Uniaxial tension and crack nucleation at points with highest stresses.
Experimental data from D. Wick (EJOT, Germany).

• Qualitatively the EJOT company was happy about the crack paths!
(What they considered as their quantity of interest (QoI)!)

3D. Wick, T. Wick, R.J. Helmig, H-J. Christ; Comput. Mater. Sci July 2015
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