Attempts to understand variational phase-field fracture for nearly, incompressible solids with experimental data

Thomas Wick

Leibniz University Hannover (LUH), Germany Institute for Applied Mathematics (IfAM) AG Wissenschaftliches Rechnen (GWR)

Feb 26-28, 2020 Experimental and Computational Fracture Mechanics Validating peridynamics and phase field models Baton Rouge, Louisiana, USA

Collaborators in this work

- Katrin Mang (Leibniz University Hannover, Germany) (Here!)
- Nils Hendrig Kröger (DIK German Kautschuk Institute, Germany)
- Winnifried Wollner (Univ. Darmstadt, Germany)
- Miriam Walloth (Univ. Darmstadt, Germany)
- Timo Heister (Clemson Univ., USA)
- Dominik Wick (EJOT, middle-sized company in fastening technologies, Germany)
- Ralph Jörg Hellmig (EJOT, Germany)
- Hans-Jürgen Christ (Univ. Siegen, Germany)
- Meng Fan (Leibniz University Hannover/China University of Petroleum, Beijing)
- Jin Yan (China University of Petroleum, China)

Overview

- 1 Motivation and problems
- 2 Attempts in verification Some positive attempts A still questionable test
- 3 Phase-field fracture model and numerical modeling A posteriori error estimation and mesh adaptivity
- A phase-field fracture model for nearly incompressible solids Modeling Numerical tests
- 5 Further validation attempts Collaboration with DIK (German Kautschuk Institute)
- 6 Conclusions

Motivation (I)

Baseline:

- Numerous studies in calculus of variations and engineering on variational approaches (phase-field) for fracture (Francfort/Marigo, 1998; Bourdin/Francfort/Marigo, 2000/2008; Bourdin 2007; Chambolle at al. 2008; Amor et al. 2009; Miehe/Hofreither/Welschinger, 2010/2010; Burke/Ortner/Süli, 2010, ...)
- Some are qualitatively useful; but quantitative studies are rarely about to find ... in particular in few of nearly-incompressible solids (see also talks from yesterday L. Anand and O. Lopez-Pamies)
- Classical numerical tasks such as $h \rightarrow 0$ often yield non-satisfactory findings. Why?
- $\rightarrow\,$ interaction with several regularization parameters (phase-field, crack irreversiblity, ...)
- → various solid mechanics models for energy (stress) splittings (Amor et al. 2009; Miehe et al. 2010; Zhang et al. 2017; Strobl/Seelig, 2015; Steinke/Kaliske, 2019; Bryant/Sun, 2018; Freddi/Royer-Carfagni, 2011, ...)

Motivation (II)

Before we address nearly-incompressible materials, we briefly review some of our results for compressible solids.

1 Motivation and problems

- 2 Attempts in verification Some positive attempts A still questionable test
- 3 Phase-field fracture model and numerical modeling A posteriori error estimation and mesh adaptivity
- A phase-field fracture model for nearly incompressible solids Modeling Numerical tests
- 5 Further validation attempts Collaboration with DIK (German Kautschuk Institute)
- 6 Conclusions

A positive example: Sneddon's 2D/3D stationary pressurized fracture

Figure: Fracture representation using the phase field φ . The inner blue region indicates the crack with $\varphi = 0$ and the red region indicates the unbroken zone where $\varphi = 1$. We have a diffusive zone in between (green region).

A positive example: Sneddon's 2D/3D stationary pressurized fracture

Figure: Fracture representation using the phase field φ . The inner blue region indicates the crack with $\varphi = 0$ and the red region indicates the unbroken zone where $\varphi = 1$. We have a diffusive zone in between (green region).

- Analytical derivations in Sneddon/Lowengrub 1969, Section 2.4 (2D), Section 3.3 (3D); fracture does not propagate but only varies in its width;
- Goal: Compute a **goal functional value**. Let's say the total volume of the fracture. Is it possible to obtain numerically computed values that coincide for $h \rightarrow 0$ with manufactured solutions? (Standard task in numerics!)

Sneddon's 2D/3D pressurized fracture: challenges

- No. 1: Phase-field smears out the fracture;
- No. 2: It is crucial how φ is initialized;
- No. 3: It is crucial how εh is chosen;
- No. 4: Moreover, very, very fine meshes around the crack path are necessary! (Adaptive mesh refinement).

2D results for TCV (total crack volume): error w.r.t. manufactured solution ¹

Total crack volumes:

$$TCV_{h,\epsilon} = \int_{\Omega} u \cdot \nabla \varphi dx,$$

$$TCV_{2d} = \int_{x} 2u_{y}(x)dx = \frac{2\pi p l_{0}^{2}(1-\nu^{2})}{E},$$

$$TCV_{3d} = \int_{x} \int_{y} 2u_{z}(x,y)dxdy = \frac{16p l_{0}^{3}(1-\nu)}{3E}$$

where
$$l_0 = 1.0, E = 1.0, p = 1e - 3, v = 0.2.$$

Domain	TCV	Rel. err.		
10x10	5.6942E-03	5.60%		
20x20	5.9393E-03	1.53%		
40x40	6.0014E-03	0.51%		
80x80	6.0383E-03	0.11%		
Ref.	6.0319E-03			

¹Heister/Wick; 2018, PAMM; see also Bourdin et al. 2012, SPE

Thomas Wick (LUH)

Understanding nearly-incompressible fracture

Length-scale refinement

Figure: Linear convergence in the length-scale ε .

3D results for TCV

ref	$10l_0/h$	# DoFs	eps	TCV	Error
1	2	500	1.7321E+01	7.4519E-02	1355.44%
÷					
8	256	946,852	1.3532E-01	5.8082E-03	13.44%
9	512	2,938,012	6.7658E-02	5.3764E-03	5.01%
10	1024	9,318,916	3.3829E-02	5.2131E-03	1.82%
11	2048	30,330,756	1.6915E-02	5.1567E-03	0.72%
12	4096	100,459,828	8.4573E-03	5.1352E-03	0.30%
Sned	don (exa	ict)		5.1200E-03	

Parallel scalability for Sneddon's 2D test²

- Single fracture
- Pressure force acts on fracture boundaries
- Local mesh refinement
- Parallel computing

						NP			
ref	Dofs	16	32	64	128	256	512	1024	2048
5	198'147	19	19	19	18	18	18	17	19
6	789'507	24	23	25	24	25	23	24	23
7	3'151'875	33	27	29	28	27	27	25	37
8	12'595'203	-	-	31	31	33	32	30	32
9	50'356'227	-	-	43	43	44	48	40	52

Table: Number of GMRES iterations of a single Newton step for the Sneddon 2d test with global refinement. Iterations are nearly independent of problem size (*h*) and number of processors *NP*. The relative residual is 1e-8.

²Heister/Wick; PAMM, 2018

Second example: damage and fatigue of screws (I)

Figure: Industrial collaboration: Uniaxial tension and crack nucleation at points with highest stresses. Experimental data from D. Wick (EJOT, Germany).

Thomas Wick (LUH)

Damage and fatigue of screws (II)³

Figure: Uniaxial tension and crack nucleation at points with highest stresses. Experimental data from D. Wick (EJOT, Germany).

• Qualitatively the EJOT company was happy about the crack paths! (What they considered as their quantity of interest (QoI)!)

³D. Wick, T. Wick, R.J. Helmig, H-J. Christ; Comput. Mater. Sci July 2015