Exceptional service in the national interest

SAND2020-2517 C

Nonlocality in peridynamics

Stewart Silling

Computational Multiscale Department Sandia National Laboratories Albuquerque, New Mexico

Workshop on Experimental and Computational Fracture Mechanics

Baton Rouge, LA, February 26, 2020

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

- Nonlocality
 - It's not as weird as everybody thinks
- Peridynamics background
 - All-in on nonlocality
- Can nonlocality be derived or observed?
 - Long-range forces
 - Smoothed degrees of freedom (homogenization)
 - Multiple pathways for flux
 - Wave dispersion

Do we ask too much of the local theory of continuum mechanics?

What peridynamics seeks to accomplish

- Treat material points on or off of evolving discontinuities with the same equations.
- Include long-range forces in the basic equations.
- Fit all this into a thermodynamic framework that's consistent with the mechanics.

Peridynamic simulation

Metallic glass crack tip*

*Hofmann et al, Nature (2008)

Nonlocality: Not as weird as everybody thinks

Discretized numerical methods are nonlocal

- Node *i* interacts directly with node *j* through the finite element equations.
- Interaction is across a finite distance Δx .
- This is a form of nonlocality.
 - Notwithstanding that the result converges to the local result as $\Delta x \rightarrow 0$.

Local PDEs get themselves into trouble

• Classical (Cauchy) PDE:

$$ho \ddot{\mathbf{u}} =
abla \cdot oldsymbol{\sigma} \left(rac{\partial \mathbf{u}}{\partial \mathbf{x}}
ight) + \mathbf{b} \cdot oldsymbol{\sigma}$$

- Many material models $\sigma(\cdot)$ evolve into deformations that are incompatible with the fundamental assumptions.
 - Phase boundaries, shock waves, cracks, ...
- Can't directly treat some important physical effects.
 - Wave dispersion, surface energy, microstructure evolution, long-range forces, . . .
- People often take drastic measures if they want to work with this PDE.
 - Element deletion, ...

Nonlocality: Not as weird as everybody thinks

These drastic measures often involve nonlocality

• Example: Artificial viscosity spreads out a shock wave and dissipates energy.

$$ho \ddot{\mathbf{u}} =
abla \cdot oldsymbol{\sigma} \left(rac{\partial \mathbf{u}}{\partial \mathbf{x}}
ight) + \gamma (
abla \cdot \dot{\mathbf{u}})^2 + \mathbf{b}.$$

- It avoids the need to apply jump conditions across an ideal shock.
- It allows converntional discretization to be used "within" a shock.
- By spreading out a shock it introduces a length scale.
- This is a type of nonlocality.

• J. Von Neumann & R. D. Richtmyer, J. Appl. Phys. 21 (1950). 232

Sandia National Laboratories

Peridynamics goes all-in on nonlocality

Classification of some theories with respect to local/nonlocality:

- Every fundamental relation in peridynamics is nonlocal in space:
 - Transport
 - Conservation
 - Material models

Peridynamic* momentum balance

- Any point x interacts directly with other points within a distance δ called the "horizon."
- The material within a distance δ of x is called the "family" of x, \mathcal{H}_x .

- If **f** satisfies f(x, q) = -f(q, x) for all x, q then linear momentum is conserved.
- SS, JMPS (2000)
- * Peri (near) + dyne (force)

Formalism for nonlocal interactions: States

• A state is a mapping whose domain is all the bonds ξ in a family.

$${f A}\langle {m \xi}
angle = {f something} \qquad orall {m \xi}\in {\cal H}.$$

• Deformation state...

 $\underline{\mathbf{Y}}[\mathbf{x}]\langle \mathbf{q}-\mathbf{x}\rangle=\mathbf{y}(\mathbf{q})-\mathbf{y}(\mathbf{x})=\text{deformed image of the bond}$

States: Nonlocal analogues of second order tensors

- Classical theory uses tensors (linear mappings from vectors to vectors).
- Peridynamics uses states (nonlinear mappings from vectors to vectors).

Peridynamic vs. local equations

• Structurally similar but with states instead of local operators.

Relation	Peridynamic theory	Standard theory
Kinematics	$\underline{\mathbf{Y}}\langle \mathbf{q}-\mathbf{x} angle = \mathbf{y}(\mathbf{q})-\mathbf{y}(\mathbf{x})$	$\mathbf{F}(\mathbf{x}) = rac{\partial \mathbf{y}}{\partial \mathbf{x}}(\mathbf{x})$
Linear momentum balance	$\rho \ddot{\mathbf{y}}(\mathbf{x}) = \int_{\mathcal{H}} \left(\mathbf{t}(\mathbf{q}, \mathbf{x}) - \mathbf{t}(\mathbf{x}, \mathbf{q}) \right) dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x})$	$ ho \ddot{\mathbf{y}}(\mathbf{x}) = \nabla \cdot \boldsymbol{\sigma}(\mathbf{x}) + \mathbf{b}(\mathbf{x})$
Constitutive model	$\mathbf{t}(\mathbf{q},\mathbf{x}) = \underline{\mathbf{T}}\langle \mathbf{q} - \mathbf{x} \rangle, \qquad \underline{\mathbf{T}} = \underline{\hat{\mathbf{T}}}(\underline{\mathbf{Y}})$	$oldsymbol{\sigma} = \hat{oldsymbol{\sigma}}(\mathbf{F})$
Angular momentum balance	$\int_{\mathcal{H}} \underline{\mathbf{Y}} \langle \mathbf{q} - \mathbf{x} \rangle \times \underline{\mathbf{T}} \langle \mathbf{q} - \mathbf{x} \rangle \ dV_{\mathbf{q}} = 0$	$oldsymbol{\sigma} = oldsymbol{\sigma}^T$
Elasticity	$\mathbf{\underline{T}}=W_{\mathbf{\underline{Y}}}$ (Fréchet derivative)	$oldsymbol{\sigma} = W_{\mathbf{F}}$ (tensor gradient)
First law	$\dot{\varepsilon} = \underline{\mathbf{T}} \bullet \underline{\dot{\mathbf{Y}}} + q + r$	$\dot{\varepsilon} = \boldsymbol{\sigma} \cdot \dot{\mathbf{F}} + q + r$
$\mathbf{\underline{T}} ullet \dot{\mathbf{Y}} := \int_{\mathcal{H}} \mathbf{\underline{T}} \langle oldsymbol{\xi} angle \ dV_{oldsymbol{\xi}}$		

Damage

- Damage is usually treated through *bond breakage*.
- After a bond ξ breaks according to some criterion, it no longer carries any force.
- Typical breakage criterion: prescribed *critical bond strain* s₀:

$$s = rac{|\mathbf{Y}\langle \boldsymbol{\xi}
angle| - |\boldsymbol{\xi}|}{|\boldsymbol{\xi}|}$$
 bond strain.

 $s >= s_0$ at some time t_0

means the bond remains broken for all $t \ge t_0$.

Autonomous crack growth

• Cracks do what they want (grow, arrest, branch, curve, oscillate, ...)

• SS & Askari, Computers and Structures (2005)