Elastodynamics Away from the failure Zone

Limit of Nonlocal Dynamics.

Theorem

Convergence of nonlocal dynamics. L. 2016 Bond based, Jha and L. 2019 State Based double well cohesive models

For each ϵ we prescribe the same initial data $u_0(x)$ and $v_0(x)$. Then the cohesive evolutions u^{ϵ} converge in mean

square uniformly in time to a limit evolution u⁰

Elastodynamics Away from the failure Zone

The limit evolution

Theorem

The limit dynamics has bounded $\it LEFM$ energy. L. 2014, 2016 Bond based, Jha and Lipton, State Based

There exists a constant C depending only on T bounding the LEFM energy,

$$\int_{D} 2\overline{\mu} |\mathcal{E}u^{0}(t)|^{2} + \overline{\lambda} |\operatorname{div} u^{0}(t)|^{2} dx + \mathcal{G}_{c} \times \operatorname{Area}(\operatorname{Crack}(t)) \leq C, \ d = 2, 3, \ (10)$$

for $0 \leq t \leq T$.

Elastodynamics away from the failure zone

Theorem (2016 L. Bond based; Jha and L. State based 2019)

Fix $\delta > 0$ and consider any set $D' \subset D$ for which points x in D' do not belong to the failute zone for every evolution $u^{\epsilon}(t,x)$ Then the limit evolution $u^{0}(t,x)$ evolves elastodynamically on D' and is governed by the balance of linear momentum expressed by the Navier Lamé equations on the domain $[0, T] \times D'$ given by

$$\rho u_{tt}^{0} = \operatorname{div} \sigma + b, \, on \, [0, \, T] \times D', \tag{11}$$

Elastodynamics Away from the failure Zone

Elastodynamics away from the damage zone

The stress tensor σ is given by,

$$\sigma = I\bar{\lambda}div u^0 + 2\bar{\mu}\mathcal{E}u^0, \qquad (12)$$

The interaction between the crack and intact material as horizon goes to zero

Traction boundary conditions, symmetric notched plate in tension

Elastodynamics Away from the failure Zone

Simulation for the nonlocal model

Figure: Displacement in the domain at time $t = 460 \ \mu s$ and $t = 520 \ \mu s$ for horizon $\epsilon = 0.625 \ mm$.

Elastodynamics Away from the failure Zone

No nonlocal forces across centerline

Figure: No interaction between x and y on either side of center line.

Figure

The limit of vanishing horizon:

As $\epsilon \to 0$ the double well nonlocal evolution converges to the dynamic brittle fracture model given by:

- Balance of linear momentum described by the linear elastic wave equation away from the crack.
- Zero traction on the crack lips.

Figure: Single-edge-notch

Interaction between centerline line tip and intact material for non local model

Interaction between failure zone and intact material: J integral

Figure: The contour S_{δ} surrounding the failure zone (in gray) moving with the failure zone.

Energy flux through S_{δ}

The kinetic energy and stress power density on S_{δ} are defined by

$$T^{\epsilon} =
ho |\boldsymbol{u}^{\epsilon}(\boldsymbol{x},t)|^2/2$$

۲

۲

$$W^{\epsilon}({m{x}}) = \int_{\mathcal{H}_{\epsilon}({m{x}})} |{m{y}} - {m{x}}| \mathcal{W}^{\epsilon}(S({m{y}},{m{x}},{m{u}}^{\epsilon}(t))) \, d{m{y}}$$

Energy flux into failure zone tip through S_{δ}

The energy flux into failure zone tip through S_{δ} is given by the J^{ϵ} integral

$$J^{\epsilon}(S_{\delta}(t)) = -\int_{S_{\delta}(t)} (T^{\epsilon} + W^{\epsilon}) V^{\epsilon} e^{1} \cdot \mathbf{n} \, ds + E^{\epsilon}(S_{\delta}(t)),$$

and

$$E^{\epsilon}(S_{\delta}(t)) = \int_{A_{\delta}(t)} \int_{\mathcal{H}_{\epsilon}(\mathbf{x}) \cap Q_{\delta}(t)} \partial_{S} \mathcal{W}^{\epsilon}(S(\mathbf{y}, \mathbf{x}, \mathbf{u}^{\epsilon})) \mathbf{e}_{\mathbf{y}-\mathbf{x}} \cdot (\dot{\mathbf{u}}^{\epsilon}(\mathbf{x}) + \dot{\mathbf{u}}^{\epsilon}(\mathbf{y})) \, d\mathbf{y} d\mathbf{x},$$

where **n** is the unit normal pointing out of the interior of $S_{\delta}(t)$ ($Int\{S_{\delta}\}$) and $A_{\delta}(t)$ is the part of D exterior to $Int\{S_{\delta}\}$. Other formulations for peridynamic J integral given in Silling and Lehoucq (2010), J. Foster, Silling, and Chen (2011), Hu, Ha, Bobaru, and Silling (2012).

The limit of the nonlocal J integral delivers the local J integral

• For remote loads far away from the crack tip the rate of change in internal energy as $\epsilon \to$ of a neighborhood of the crack tip is

$$\lim_{\epsilon \to 0} J^{\epsilon} = J = \frac{1+\nu}{E} \frac{V^3}{c_s^2 D} \alpha_t K_l^2(t) + O(\delta),$$
(13)

Here V is crack tip velocity

• From energy balance the fracture toughness is equal to elastic energy flowing into the crack and the standard kinetic relation for crack tip motion is

$$G_c = J/V$$

providing an implicit equation for crack velocity.

A second way to get kinetic relation

- The double well nonlocal energy is defined everywhere, the hallmark of peridynamic modeling
- Calculate rate of change of energy inside domain containing crack tip *not excluding it as done with J integral approach*.
- More information from nonlocal model can be obtained. See Jha & Lipton, arXiv.org ArXiv:1908.07589, preprint 2020.

Interaction between failure zone and intact material, *We* proceed another way: a completely nonlocal calculation at fixed ϵ

Figure: Contour Γ_{δ} surrounding the domain P_{δ} moving with the failure zone center line velocity V^{ϵ} .

Change of internal energy inside P_{δ}

$$\frac{d}{dt}\int_{\mathcal{P}\delta(t)} T^{\epsilon} + W^{\epsilon} d\mathbf{x} = I^{\epsilon}(\Gamma_{\delta}(t))$$

with

$$I^{\epsilon}(\Gamma_{\delta}(t)) = \int_{\Gamma_{\delta}(t)} (T^{\epsilon} + W^{\epsilon}) V^{\epsilon} \boldsymbol{e}^{1} \cdot \boldsymbol{n} \, d\boldsymbol{s} - E^{\epsilon}(\Gamma_{\delta}(t)),$$

and

$$E^{\epsilon}(\Gamma_{\delta}(t)) = \int_{\mathcal{A}_{\delta}(t)} \int_{\mathcal{H}_{\epsilon}(\mathbf{x}) \cap \mathcal{P}_{\delta}(t)} \partial_{S} \mathcal{W}^{\epsilon}(S(\mathbf{y}, \mathbf{x}, \mathbf{u}^{\epsilon})) \mathbf{e}_{\mathbf{y}-\mathbf{x}} \cdot (\dot{\mathbf{u}}^{\epsilon}(\mathbf{x}) + \dot{\mathbf{u}}^{\epsilon}(\mathbf{y})) \, d\mathbf{y} d\mathbf{x},$$

where **n** is the unit normal pointing out of the domain $\mathcal{P}_{\delta}(t)$ and $A_{\delta}(t)$ is the part of D exterior to $\mathcal{P}_{\delta}(t)$.

No Mott hypothesis needed to include kinetic energy instead a formula for change in internal energy in a domain **containing** the crack.

• Calculation gives that the flux of the stress power density into the domain is related to fracture toughness by

$$\int_{\Gamma_{\delta}(t)} W^{\epsilon} V^{\epsilon} \boldsymbol{e}^{1} \cdot \boldsymbol{n} \, d\boldsymbol{s} = -\mathcal{G}_{c} V^{\epsilon}(t) + O(\delta). \tag{14}$$

Jha & Lipton, arXiv.org ArXiv:1908.07589, preprint 2020.

• For remote loads far away from the crack tip the rate of change in internal energy as $\epsilon \to 0$ of a neighborhood of the crack tip is

$$\lim_{\epsilon \to 0} \frac{d}{dt} \int_{\mathcal{P}_{\delta}(t)} T^{\epsilon} + W^{\epsilon} d\mathbf{x} = \frac{1+\nu}{E} \frac{V^{3}}{c_{s}^{2} D} \alpha_{t} \mathcal{K}_{l}^{2}(t) - V \mathcal{G}_{c} + O(\delta), \quad (15)$$

Here V is crack tip velocity

Kinetic relation for crack tip velocity

• Energy balance:

$$\lim_{\delta \to 0} \lim_{\epsilon \to 0} \frac{d}{dt} \int_{\mathcal{P}^{\epsilon}_{\delta}(t)} T^{\epsilon} + W^{\epsilon} d\mathbf{x} = 0$$
 (16)

we get a Kinetic relation for crack tip motion Jha & Lipton, arXiv.org ArXiv:1908.07589.

• This kinetic relation is **exactly the one given by R. Clifton, L.B.** Fruend, J.R. Willis, given by,

$$\mathcal{G}_c = \frac{1+\nu}{E} \frac{V^2}{c_s^2 D} \alpha_t \mathcal{K}_l^2(t), \qquad (17)$$

More generally we have the formula

$$\lim_{\epsilon \to 0} \frac{d}{dt} \int_{\mathcal{P}_{\delta}(t)} T^{\epsilon} + W^{\epsilon} d\mathbf{x} = 0$$

$$= \int_{\Gamma_{\delta}} \mathbb{C}\mathcal{E}\boldsymbol{u}^{0}\boldsymbol{n} \cdot \dot{\boldsymbol{u}}^{0} ds - \mathcal{G}_{c}V(t) + O(\delta).$$
(18)

Numerical Simulations

- The bond potential $f(p) = c(1 e^{-\beta p})$ and J(q) = 1 q where c and β are positive constants.
- These constants are determined so that the bulk modulus k and the critical energy release rate G_c are k=25GPa, $\nu = 0.245$, $G_c=500$ Jm⁻².
- The density is $\rho = 1200 \text{kg-m}^{-3}$.
- The maximum in the bond force curve occurs at $\mathcal{S}_c = 1/\sqrt{2\beta|y-x|}.$
- The hydrostatic potential is $g(\rho) = C\rho^2/2$
- Here the constants C, c, β are calibrated to k and \mathcal{G}_c as shown above.

First example

Figure: Displacement in the domain at time $t=460~\mu s$ and $t=520~\mu s$ for horizon $\epsilon=0.625$ mm.

Figure: Failure zone widths (red) $2\epsilon + 2h$. (a), (b), (c) correspond to $FZ^{\epsilon}(t)$ at $t = 460 \,\mu s$ for $\epsilon = 2.5, 1.25, 0.625 \, \text{mm.}$ (d), (e), (f) correspond to $FZ^{\epsilon}(t)$ at $t = 520 \,\mu s$ for $\epsilon = 2.5, 1.25, 0.625 \, \text{mm.}$

Closer look

Figure: Top: Failure zone $FZ^{\epsilon}(t)$ for $\epsilon = 2.5, 1.25, 0.625 \text{ mm}$ at time $t = 520 \,\mu\text{s}$ on top of each other. Red, light yellow, and light blue color is used for FZ^{ϵ} of horizon 2.5, 1.25, 0.625 mm respectively. Bottom: Zoomed in near the crack center line tip.

Crack length vs time

Figure: The crack center line length is plotted as a function of time for three different horizons.

Interaction of crack with circular void

Figure: (a) Setup. Here $\epsilon = 0.32$ mm and v = 250 mm/s. (b) Plot of magnitude of the strain at $t = 178 \,\mu$ s. (c) Plot of the failure zone at $t = 178 \,\mu$ s. Failure zone width shown coincides with $2\epsilon + 2h$, *h* is mesh size for numerical discretization.

y component of displacement

Figure: y component of displacement at different time 150 μ s (a), 174.4 μ s (b), 178 μ s (c).

Stress power density flux + Kinetic flux vs VG_c

Figure: Stress power density flux $\int_{\mathcal{P}_{\delta}} W \times V \, ds$ and LEFM energy rate VG_c . Here energy rates are divided by $c_S G_c$, where shear wave speed of the material 3 is $c_s = 5715.47 \text{ m/s}$ and $G_c = 10204.097 \text{ J/m}^2$. The result shows that agreement is better when contour is small as is shown by calculation.