Nonlocal Brittle Fracture Modeling

Robert Lipton

Department of Mathematics Center for Computation and Technology Louisiana State University

Joint work with Prashant Jha (UT Austin)

Experimental and Computational Fracture Mechanics, LSU February 26 - 28, 2020 Supported by ARO Grant W911NF1610456

Overview of talk

- Global fracture-like defects emerge from Newton's laws applied at each point in the body from nonlocal forces that can soften.
- Spatial localization of gradients emerge from the dynamics.
- In this model the fracture toughness is the same for all choices of nonlocal interaction. This aspect implies the smaller the horizon the smaller the transverse dimension of the softening zone.
- Convergence to a sharp fracture evolution in the small horizon limit.
- Explicit relation between stress power expended on either side of the crack and fracture toughness for double well cohesive peridynamics.
- Nonlocal model recovers the **kinetic relation** for sharp crack growth seen in the modern theory of fracture mechanics given in Anderson, Freund, Ravi-Chandar.

• Peridynamics: Nonlocal modeling of fracture problems: A single field model

- S.A. Silling. Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces. J. Mech. Phys. Solids 48 (2000) 175-209.
- S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Peridynamic states and constitutive modeling. J. Elasticity, 88 (2007) 151-184.
- F. Bobaru and W. Hu The meaning , selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fracture, 176 (2012) 221–222.
- J. Foster, S.A. Silling, and W. Chen. An energy based failure criterion for use with peridinamic states. Int. J. Multiscale Computational Engineering. 9 (2011) 657–688.
- E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications. Springer (2014).
- Q. Du, Y. Tao, and X. Tian. A perydynamics model of fracture mechanics with bond breaking. J. Elast. (2017) https://doi.org/10.1007/s10659-017-9661-2.
- B. Ren, C. Wu, P. Seleson, D. Zheng, and D. Lyu. A peridynamic failure analysis of fiber reinforced composite laminates using FEM discontinuous Galerkin approximations. Int. J. of Fracture, 214 (2018) 49 – 68.
- E. Emmrich and D. Phulst. A short note on modeling damage in peridynamics. J. Elast. 123, 245–252 (2016).
- K. Dayal and K. Bhattacharya, Kinetics of Phase Transformations in the Peridynamic Formulation of Continuum Mechanics, Journal of the JMPS, Vol. 54 (2006) 1811-1842.
- Ha, Y. D. and Bobaru, F. (2010). Studies of dynamic crack propagation and crack branching with peridynamics. International Journal of Fracture, 162(1-2):229–244. 276:431–452.
- Littlewood, D. J. (2010). Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. In Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition (IMECE).

Double well force potentials, perydynamics, and numerical methods for nonlocal fracture modeling

- P. Jha and R. Lipton. Numerical analysis of peridynamic models in Holder Space, SIAM J. Numer. Anal. 56:2 (2018) 906-941.
- P. Jha and R. Lipton. Numerical convergence of nonlinear nonlocal models to local elastodynamics. International Journal for Numerical Methods in Engineering 114:16 (2018) 1389-1410.
- Jha & Lipton, Plane elastodynamic solutions for running cracks as the limit of double well nonlocal dynamics. arXiv.org ArXiv:1908.07589.
- P. Jha and R. Lipton. Numerical convergence of finite difference approximations for state based peridynamic fracture models. Computer Methods In Applied & Engineering Sciences. 2019, https://doi/org/10.1016/j.cma.2019.03.024
- P. Jha and R. Lipton. Finite element convergence for state-based peridynamic fracture models. In revision.
- Lipton, R., Said, E., and Jha, P. K. (2018) Dynamic brittle fracture from nonlocal double-well potentials: A state-based model Handbook of Nonlocal Continuum Mechanics for Materials and Structures, pages 1–27.
- P. Jha and R. Lipton. Convergence of state based peridynamic models to LEFM models. To appear in Communications in Applied Mathematics and Computation, 2019.
- Lipton, R., Said, E., and Jha, P. (2018) Free damage propagation with memory. *Journal of Elasticity*, 133(2):129–153.
- R. Lipton. Cohesive dynamics and brittle fracture. Journal of Elasticity. 124:2 (2016) 143-191.
- R. Lipton. Dynamic brittle fracture as a small horizon limit of Peridynamics. Journal of Elasticity. 125:1 (2014) 21-50.

Phase field modeling of fracture: A two field model

Quasi-static:

Francfort, G., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319-1342 (1998)

B. Bourdin, G. Francfort, J.-J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids 48 (2000) 797-826.

Oynamic:

Bourdin, B., Larsen, C., Richardson, C.: A time-discrete model for dynamic fracture based on crack regularization. Int. J. Fract. 168, 133-143 (2011)

Borden, M., Verhoosel, C., Scott, M., Hughes, T., Landis, C.: A phase-field description of dynamic brittle

fracture. Comput. Methods Appl. Mech. Eng. 217-220, (2012).

Length scale of nonlocal interaction

- $\epsilon = {\rm length}$ scale of nonlocal interaction
- Interaction between x and y only within a ϵ -neighborhood of x

•
$$\mathcal{H}_{\epsilon}(x) = \{y \in \mathbb{R}^3 : |y - x| < \epsilon\}$$

Displacement and strain

The displacement at x denoted by u(x), and the strain between x and y

$$\mathcal{S} = \mathcal{S}(oldsymbol{y},oldsymbol{x},t;oldsymbol{u})) = rac{u(t,y) - u(t,x)}{|y-x|} \cdot e, ext{ where } e = rac{y-x}{|y-x|} \quad (1)$$

Double Well Potential

Figure

Figure: The potential function f(r) for tensile force.

Tensile Potential Parameterized by length scale of nonlocal interaction ϵ

$$\mathcal{W}^{\epsilon}(S(\boldsymbol{y},\boldsymbol{x},t;\boldsymbol{u})) = \frac{J^{\epsilon}(|\boldsymbol{y}-\boldsymbol{x}|)}{\epsilon|\boldsymbol{y}-\boldsymbol{x}|}f(\sqrt{|\boldsymbol{y}-\boldsymbol{x}|}S(\boldsymbol{y},\boldsymbol{x},t;\boldsymbol{u}))$$

$$\mathcal{W}^{\epsilon}(\boldsymbol{S}(\boldsymbol{y},\boldsymbol{x},t;\boldsymbol{u})) \leq \frac{J^{\epsilon}(|\boldsymbol{y}-\boldsymbol{x}|)}{\epsilon} \times |\boldsymbol{y}-\boldsymbol{x}| \times \min\{f'(\boldsymbol{0})|\boldsymbol{S}(\boldsymbol{y},\boldsymbol{x},t;\boldsymbol{u})|^{2}, \frac{C^{+}}{|\boldsymbol{y}-\boldsymbol{x}|}\}$$

Force vs tensile strain

Figure: Cohesive force.

Force Parameterized by ϵ

$$\mathcal{L}^{\epsilon}(\boldsymbol{u})(\boldsymbol{x},t) = \frac{2}{\epsilon^{d}\omega_{d}} \int_{H_{\epsilon}(\boldsymbol{x})\cap D} \frac{J^{\epsilon}(|\boldsymbol{y}-\boldsymbol{x}|)}{\epsilon|\boldsymbol{y}-\boldsymbol{x}|} \partial_{S} f(\sqrt{|\boldsymbol{y}-\boldsymbol{x}|}S(\boldsymbol{y},\boldsymbol{x},t;\boldsymbol{u}))\boldsymbol{e}_{\boldsymbol{y}-\boldsymbol{x}} d\boldsymbol{y}.$$
(2)

 $\mathcal{H}_{\epsilon}(x) = \{y \in \mathbb{R}^3 : |y - x| < \epsilon\}, x \in D.$

Dynamics on the domain D

Figure: Domain D.

The influence function J satisfies $0 \le J \le M$ and $J^{\epsilon}(|y-x|) = J(|y-x|/\epsilon)$.

The non-local dynamics

$\rho \ddot{\boldsymbol{u}}^{\epsilon}(\boldsymbol{x},t) = \mathcal{L}^{\epsilon}(\boldsymbol{u}^{\epsilon})(\boldsymbol{x},t) + \boldsymbol{b}(\boldsymbol{x},t), \text{ for } \boldsymbol{x} \in D.$ (3)

Initial conditions on the domain D

Figure: Domain D.

 u^{ϵ} satisfies the initial conditions $u^{\epsilon}(0, x) = u_0(x)$, $\partial_t u^{\epsilon}(0, x) = v_0(x)$ for all $x \in D$.

Kalthoff Winkler Experiment Simulation: Trask, Yu, and Parks 2019

Figure: Experimental set up.

Kalthoff Winkler Experiment Simulation: Trask, Yu, and Parks 2019

Figure: Simulation.

Robert Lipton Nonlocal Brittle Fracture Modeling

Kalthoff Winkler Experiment Simulation: Trask, Yu, and Parks 2019

Figure: Right quadrant 68° angle crack.

Failure Zone

Definition

Failure Zone. Points \mathbf{x} where a nonzero fraction of points \mathbf{y} in horizon centered at \mathbf{x} have no interaction with \mathbf{x} .

Failure Zone

Failure Zone

Fracture toughness definition for tensile loads

Figure: Definition of fracture toughness \mathcal{G}_c in 2-d. The work per unit length required to eliminate all interaction between x and y on either side of the line.

Fracture toughness is the same for all choices of ϵ

- We work with a family of models with the same fracture toughness that are independent of ϵ .
- This means that the region of interaction on both sides of the plane goes to zero with ϵ and we converge to a sharp interface model.
- Localization as $\epsilon \rightarrow 0$ is hard wired into this nonlocal model.

Failure Zone

Failure zone propagating from left to right: A "crack" in the double well cohesive peridynamic model

Figure: Failure zone with centerline

Failure Zone

Models with fracture toughness is the same for all choices of ϵ

Figure: Calculation of fracture toughness \mathcal{G}_c . For each point x along the dashed line, $0 \le z \le \epsilon$, the work required to break the interaction between x and y in the spherical cap is summed up using spherical coordinates centered at x.

Failure Zone

Fracture toughness is the same for all choices of ϵ

$$\mathcal{G}_{c}(x) = \frac{2}{V_{\epsilon}} \int_{0}^{\epsilon} \int_{0}^{2\pi} \int_{z}^{\epsilon} \int_{0}^{\arccos\left(\frac{z}{|\zeta|}\right)} \int_{0}^{z} J^{\epsilon}\left(|\zeta|\right) \frac{f_{\infty}}{\epsilon} |\zeta|^{2} \sin \phi d\phi d|\zeta| d\theta dz \quad (4)$$
$$= \frac{6}{4} f_{\infty} \int_{0}^{1} J(r) r^{3} dr, \qquad (5)$$

Failure Zone

Elastic coefficients: tensile and hydrostatic components

Assume a small linear displacement u(x) = Fx over $\mathcal{H}_{\epsilon}(x)$ & taylor expansion in F in

$$PD^{\epsilon}(u(t)) = \mathcal{W}^{\epsilon}(S(\boldsymbol{y}, \boldsymbol{x}, t; \boldsymbol{u})) + \mathcal{V}^{\epsilon}(\theta(\boldsymbol{x}, t; \boldsymbol{u}))$$
(6)

gives to leading order for $\mathcal{S} = Fe \cdot e$ and $|S| << |S_c^{\pm}|$, $|\theta| << |\theta_c^{\pm}|$

$$PD^{\epsilon}(u(t)) = \sum_{ijkl} \left(2\overline{\mu} \frac{\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}}{2} + \overline{\lambda}\delta_{ij}\delta_{kl} \right) F_{ij}F_{kl}$$
(7)

Elastic Constants

Here $\overline{\mu}$, $\overline{\lambda}$ are given by the explicit formulas

$$\overline{\mu} = \frac{f''(0)}{10} \int_0^1 |\xi|^3 \omega(|\xi|) \, d|\xi|, \tag{8}$$

Failure Zone

and the Lame constant is given by

$$\overline{\lambda} = \frac{f''(0)}{10} \int_0^1 |\xi|^3 \omega(|\xi|) \, d|\xi|.$$
(9)

Failure Zone

Approaching a local fracture model in the limit of vanishing non-locality

Consider a sequence of solutions u^{ϵ} associated with a sequence of horizons $\epsilon \to 0$.