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Overview of talk

Global fracture-like defects emerge from Newton’s laws applied at
each point in the body from nonlocal forces that can soften.

Spatial localization of gradients emerge from the dynamics.

In this model the fracture toughness is the same for all choices of
nonlocal interaction. This aspect implies the smaller the horizon the
smaller the transverse dimension of the softening zone.

Convergence to a sharp fracture evolution in the small horizon limit.

Explicit relation between stress power expended on either side of the
crack and fracture toughness for double well cohesive peridynamics.

Nonlocal model recovers the kinetic relation for sharp crack
growth seen in the modern theory of fracture mechanics given in
Anderson, Freund, Ravi-Chandar.
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Phase field modeling of fracture: A two field model
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Length scale of nonlocal interaction

Hε(x)

x

y
ε

ε = length scale of nonlocal interaction

Interaction between x and y only within a ε-neighborhood of x

Hε(x) = {y ∈ R3 : |y − x | < ε}
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Displacement and strain

The displacement at x denoted by u(x), and the strain between x
and y

S = S(y , x , t; u)) =
u(t, y)− u(t, x)

|y − x |
· e, where e = y−x

|y−x | (1)
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Double Well Potential

r c−r c
r

C+

f (r)

Figure

Figure: The potential function f (r) for tensile force.
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Tensile Potential Parameterized by length scale of nonlocal
interaction ε

Wε(S(y , x , t; u)) =
Jε(|y − x |)
ε|y − x | f (

√
|y − x |S(y , x , t; u))

Wε(S(y , x , t; u)) ≤ Jε(|y − x |)
ε

× |y − x | ×min{f ′(0)|S(y , x , t; u)|2, C+

|y − x | }
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Force vs tensile strain

r c−r c r+−r+
r

f ′(r)

(a)

Figure: Cohesive force.
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Force Parameterized by ε

Lε(u)(x , t)

=
2

εdωd

∫
Hε(x)∩D

Jε(|y − x |)
ε|y − x |

∂S f (
√
|y − x |S(y , x , t; u))ey−x dy .

(2)

Hε(x) = {y ∈ R3 : |y − x | < ε}, x ∈ D.
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Dynamics on the domain D

D

Figure: Domain D.

The influence function J satisfies 0 ≤ J ≤ M and
Jε(|y − x |) = J(|y − x |/ε).
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The non-local dynamics

ρüε(x , t) = Lε(uε)(x , t) + b(x , t), for x ∈ D. (3)
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Initial conditions on the domain D

D

Figure: Domain D.

uε satisfies the initial conditions uε(0, x) = u0(x),
∂tu

ε(0, x) = v0(x) for all x ∈ D.
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Kalthoff Winkler Experiment Simulation: Trask, Yu, and
Parks 2019

Figure: Experimental set up.
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Kalthoff Winkler Experiment Simulation: Trask, Yu, and
Parks 2019

Figure: Simulation.
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Kalthoff Winkler Experiment Simulation: Trask, Yu, and
Parks 2019

Figure: Right quadrant 68◦ angle crack.
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Failure Zone

Failure Zone

Definition

Failure Zone. Points x where a nonzero fraction of points y in
horizon centered at x have no interaction with x.

Hε(x)

x

y

ε
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Failure Zone

Fracture toughness definition for tensile loads

y

x
Crack Line

ε

ε

Figure: Definition of fracture toughness Gc in 2-d. The work per
unit length required to eliminate all interaction between x and y
on either side of the line.
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Failure Zone

Fracture toughness is the same for all choices of ε

We work with a family of models with the same fracture
toughness that are independent of ε.

This means that the region of interaction on both sides of the
plane goes to zero with ε and we converge to a sharp interface
model.

Localization as ε→ 0 is hard wired into this nonlocal model.

Robert Lipton Nonlocal Brittle Fracture Modeling



Peridynamic Modeling
Multiscale Modeling & Nonlocal Dynamics

The Limit Evolution
Kinetic relations directly from the nonlocal model

Failure Zone

Failure zone propagating from left to right: A “crack” in
the double well cohesive peridynamic model

ε
ε

Figure: Failure zone with centerline
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Failure Zone

Models with fracture toughness is the same for all choices
of ε

y

z

x

ζ ε

θ

arccos(z/ζ)

Figure: Calculation of fracture toughness Gc . For each point x
along the dashed line, 0 ≤ z ≤ ε, the work required to break the
interaction between x and y in the spherical cap is summed up
using spherical coordinates centered at x .
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Failure Zone

Fracture toughness is the same for all choices of ε

Gc(x) =
2

Vε

ε∫
0

2π∫
0

ε∫
z

arccos
(

z
|ζ|

)∫
0

Jε (|ζ|) f∞
ε
|ζ|2 sinφdφd |ζ|dθdz (4)

=
6

4
f∞

1∫
0

J(r)r3dr , (5)

Robert Lipton Nonlocal Brittle Fracture Modeling



Peridynamic Modeling
Multiscale Modeling & Nonlocal Dynamics

The Limit Evolution
Kinetic relations directly from the nonlocal model

Failure Zone

Elastic coefficients: tensile and hydrostatic components

Assume a small linear displacement u(x) = Fx over Hε(x) & taylor
expansion in F in

PDε(u(t)) =Wε(S(y , x , t; u)) + Vε(θ(x , t; u)) (6)

gives to leading order for S = Fe · e and |S | << |S±c |, |θ| << |θ±c |

PDε(u(t)) =
∑
ijkl

(
2µ
δikδjl + δilδjk

2
+ λδijδkl

)
FijFkl (7)
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Failure Zone

Elastic Constants

Here µ, λ are given by the explicit formulas

µ =
f ′′(0)

10

∫ 1

0
|ξ|3ω(|ξ|) d |ξ|, (8)

and the Lame constant is given by

λ =
f ′′(0)

10

∫ 1

0
|ξ|3ω(|ξ|) d |ξ|. (9)
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Failure Zone

Approaching a local fracture model in the limit of
vanishing non-locality

Consider a sequence of solutions uε associated with a sequence of
horizons ε→ 0.
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