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I MOTIVATION

Adequacy of peridynamic models and simulations

One important key for the adequacy of a model is the confidence how
it compares with experimental data [27, 28].

Main objectives

» Review the available experimental data
» Provide an measurement for the confidence level

» Advanced visualization techniques for additional comparison
against experiments
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COLLECTION OF DATA

Search in Web of Science for N
. . . Collection of data
Comparison against experiments N
» peridynamics + experiment Comparison against
. . experiments
» peridynamics + benchmark ‘
Confidence of
» 39 papers including comparison against experimental data peridynamics models
» Using 52 experimental paper Advanced
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techniques
. . . . Conclusion and
Advanced visualization techniques Outlook

References

» peridynamics + computer graphics
» peridynamics + visualization
» 5 papers (2 physically-based rendering and 3 for the extraction)

» Using 1 experimental paper

Lhttps:/ /webofknowledge.com/
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I METRIC FOR COMPARISON OF EXPERIMENTAL DATA
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» Obtain y-values from simulation and y-values from experiment at
same x-values
» Do linear regression with y-values

» Use r value squared as confidence level
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COMPARISON OF WAVE PROPAGATION AGAINST
EXPERIMENTS

Application B S Material Exp
Stress wave propagation (half-plane) v Plastic polymer (CR-39)  [20]
Wave speed (Edge-on impact experiment) v ALON,PMMA [76,75,74]
Split-Hopkinson pressure bar v Aluminum [17,10]
Wave dispersion and propagation V' Sandstone [82,89]

Table 1: Applications for the comparison of wave propagation against experimental resuls. Legend: B
refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to experimental data, and
Sim to simulation.



COMPOSITE

Application B S Material Exp Sim
Interaction between a dynamically growing crack v Composite  [53] [2]
Damage growth prediction (Six-bolt specimen) v Composite  [73] [64]
Damage prediction (Center-cracked laminates) v Composite [4, 48, 83, 8] [49]
Dynamic tension test (prenoteched rectangular plate) v Composite [43, 8] [39]

Table 2: Applications of bond-based and state-based peridynamics for the comparison with experimental
data. Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to
experimental data, and Sim to simulation.

» Only quantitative comparison against experiment was done, e.g.
crack pattern or crack branches.

» Only bond-based peridynamic models were applied.



STEEL/ALUMINUM

Application B S Material Exp Sim
Crack growth (Kalthoff-Winkler) v v Steel [45,47, 46] [71, 3, 36, 90]
Dynamic fracture v Steel (4340) [32] [31]
Fracture (Compact tension test) v Aluminum,Steel [59, 61,7, 54] [84, 88, 87]
Taylor impact test v' Aluminum [16, 44] [29, 30, 3]
Ballistic impact test v' Aluminum (6061-T6)  [81] [79]

Table 3: Applications of bond-based and state-based peridynamics for the comparison with experimental

data. Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to
experimental data, and Sim to simulation.



CONCRETE

Application B S  Material Exp Sim
Lap-splice experiment v Concrete  [33] [33]
3-point bending beam v v’ Concrete [41,14] [35,5]
Failure in a Barazilian disk under compression v’ Concrete  [35] [38]

Table 4: Applications of bond-based and state-based peridynamics for the comparison with experimental

data. Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to

experimental data, and Sim to simulation.



GLASS

Application B S Material Exp Sim
Dynamic crack propagation (prenotched thin plate) v Glass [11,24,67]  [90,37,2]
Impact damage with a thin polycarbonate backing v Glass [26, 15, 6] [40]
Single crack paths (quenched glass plate) v Glass [86, 69, 9] [50]
Multiple crack paths (quenched glass plate) v Glass [70, 85] [50]
Crack tip propagation speed v Glass [11] [36, 90, 37]
Fast cracks in PMMA v PMMA [25] [2]
Tensile test v PMMA [77] [21]

Table 5: Applications of bond-based and state-based peridynamics for the comparison with experimental
data. Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to
experimental data, and Sim to simulation.

Remarks

» Six papers comapred against the same experimental results:
FP Bowden et al. “Controlled fracture of brittle solids and
interruption of electrical current”. In: Nature 216.5110 (1967),
pp- 38—42.

» Only bond-based peridynamics was considered.



VARIOUS

Application B S  Material Exp Sim
Ruptures in Bio membranes v' Bio membranes [34] [78]
Arctic engineering VA (V) [72] [57]
Electronic packages v Graphene [63] [65]
Dynamic crack propagation v/ FGM (Epoxy/Soda-lime glass)  [51,1,52]  [19]

Table 6: Applications of bond-based and state-based peridynamics for the comparison with experimental
data. Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to

experimental data, and Sim to simulation.

» For arctic engineering three different speeds of the drill were

compared.
» Confidence level heavily depends on the speed value.



RELATIVE ERROR FOR SCALAR OBSERVABLE
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Figure 1: The plot shows the relation between the Young modulus E of the material and the relative error
of the experimental result and the obtained observable in the simulation.
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OVERVIEW RELATIVE ERROR

Application Material Observable Rel. error Exp Sim
Edge-on impact experiment ALON Avg. propagation speed of primary wave front 357-1072 [60] [87]
Kalthoff-Winkler experiment Steel Crack initiation time —345.1072 [58] [36]
Kalthoff-Winkler experiment Steel Crack propagation speed 0.14 [45, 68] [12]
Crushing-brittle ice by a rotating cylinder Ice Mean force at 50mms ™1 —0.74 [72] [57]
Crushing-brittle ice by a rotating cylinder Ice Mean force at 130 mms 1 —0.21 [72] [57]
Crushing-brittle ice by a rotating cylinder Ice Mean force at 210 mms 1 —0.25 [72] [57]
Crushing-brittle ice by a rotating cylinder Ice Peak force at 50mms 1 —0.66 [72] [57]
Crushing-brittle ice by a rotating cylinder Ice Peak force at 130 mms ! —0.12 [72] [57]
Crushing-brittle ice by a rotating cylinder Ice Peak force at 210mms ™~ 1 029 [72] [57]
Pre-cracked glass (step tensile loading) Soda-lime Max. crack propagation speed 627102 [11] [37]
Pre-cracked plate (step tensile loading) Soda-lime Max. crack propagation speed —027 [11] [90]
Pre-cracked plate (step tensile loading) Soda-lime Max. crack propagation speed (16281 nodes) 0.29 [11] [36]
Pre-cracked plate (step tensile loading) Soda-lime Max. crack propagation speed (4141 nodes) 048 [11] [36]
Pre-cracked plate (step tensile loading) Soda-lime Max. crack propagation speed (refined) 0.71 [11] [36]

Table 7: Relative error between the observable measured in the experiment and obtained in the simulation.



R? CORRELATION FOR SERIES OF OBSERVABLE
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Figure 2: The plot shows the relation between the Young modulus E of the material and the extracted
correlation R? of the experimental plot and the plot obtained by simulations.
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OVERVIEW R?Z CORRELATION

Application Material Observable R2 Exp Sim
Split-Hopkinson pressure bar Aluminum Strain vs time 0.99 [17] [42]
Taylor impact test Aluminum (6061-T6) Norm diameter/length; strain vs stress 0.96 [44, 16] [29]
Ballistic impact test Aluminum (6061-T6) Residual vel vs impact vel 0.99 [81] [79]
Dynamic fracture Steel (4340) Strain vs stress 0.97 [32] [31]
Compact tension test Aluminum (D16AT) Force vs CMOD 1 [54, 80] [84]
Compact tension test SAE 1020 steel Crack path position 0.97 [61] [87]
3-point bending Concrete Load vs CMD 0.61 [41] [35]
3-point bending (D3) Concrete Load vs CMOD 0.85 [14] [51
3-point bending (D6) Concrete Load vs CMOD 0.89 [14] 51
3-point bending (D9) Concrete Load vs CMOD 0.77 [14] 51
3-point bending (D3 LPD-load) Concrete Load vs LPD 0.87 [14] 51
3-point bending (D6 LPD-load) Concrete Load vs LPD 0.83 [14] [5]
3-point bending (D9 LPD-load) Concrete Load vs LPD 0.51 [14] [51
Fast crack growth PMMA Crack velocity vs time 0.72 [25] [2]
Tensile test PMMA Poisson ratio vs time 0.65 771 [21]
3-point loading FEM (Epoxy/Soda-lime glass) Crack length vs time 0.99 [52] [19]
Wave dispersion and propagation Sandstone Dispersion curves 0.93 [82] [13]

Table 8: R? correlation between the series of observables between experiment and simulation.

Abbreviations: crack mouth displacement (CMD), crack mouth opening displacement (CMOD), and load

point displacement (LPD).



PHYSICALLY-BASED RENDERING

Wei Chen et al.
“Peridynamics-Based Fracture
Animation for Elastoplastic
Solids”. In: Computer Graphics
Forum (2017), n/a-n/a. ISSN:
1467-8659
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J. A. Levine et al. “A Peridynamic
Perspective on Spring-mass
Fracture”. In: Proceedings of the
ACM SIGGRAPH/Eurographics

Symposium on Computer Animation.

SCA "14. Copenhagen, Denmark:
Eurographics Association, 2014,
pp- 47-55
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EXTRACTION OF FRAGMENTS
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» David Littlewood, Stewart Silling, and Paul Demmie. o onand
“Identification of Fragments in a Meshfree Peridynamic
Simulation”. In: ASME 2016 International Mechanical Engineering
Congress and Exposition. American Society of Mechanical
Engineers. 2016, VO09T12A071-V009T12A071

» Patrick Diehl et al. “Extraction of Fragments and Waves After
Impact Damage in Particle-Based Simulations”. In: Meshfree
Methods for Partial Differential Equations VIII. Springer
International Publishing, 2017, pp. 17-34
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FRACTURE PROGRESSION
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Michael Bufller et al. “Visualization of fracture progression in Catfest:
peridynamics”. In: Computers & Graphics 67 (2017), pp. 45-57. ISSN: el

0097-8493
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SUMMARY

Application B S Reference
Animation of brittle fracture v [55]
Fracture animation in elastoplastic solids v 18]
Waves after impact damage v [23]
Fracture progression v o v [12]
Extraction of fragments v [23, 56]

Table 9: Overview of applications of bond-based and state-based peridynamics in visualization of fracture
in solids. Legend: B refers to bond-based peridynamics and S refers to state-based peridynamics.

» All these advances techniques are additional models.

» Validation against experiments is needed for these models.

Extraction of
additional attributes
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