

POLYTECHNIQUE

A REVIEW FOR BENCHMARK EXPERIMENTS FOR VALIDATION OF PERIDYNAMIC MODELS

Patrick Diehl

Serge Prudhomme and M. Levésque patrick.diehl@polymtl.ca

Laboratory of Multiscale Mechanics Polytechnique Montreal

January 16, 2018

MOTIVATION

Adequacy of peridynamic models and simulations

One important key for the adequacy of a model is the confidence how it compares with experimental data [27, 28].

Main objectives

- · Review the available experimental data
- Provide an measurement for the confidence level
- Advanced visualization techniques for additional comparison against experiments

Methodology

Comparison against experiments

Confidence of peridynamics models and simulations

Advanced visualization techniques

Conclusion and Outlook

OUTLINE

Methodology

- Collection of data
- Metric for the comparison

2 Comparison against experiments

- Wave propagation
- Crack initiation/propagation Composite
 Steel/Aluminum
 Concrete
 Glass
 Various

3 Confidence of peridynamics models and

SIMULATIONS

- Scalar observable
- Series of obversable

Advanced visualization techniques

- Physically-based rendering
 - Extraction of additional attributes

5 Conclusion and Outlook

Methodology

Comparison against experiments

Confidence of peridynamics models and simulations

Advanced visualization techniques

Conclusion and Outlook

COLLECTION OF DATA

Search in Web of Science¹ for

Comparison against experiments

- peridynamics + experiment
- peridynamics + benchmark
- · 39 papers including comparison against experimental data
- Using 52 experimental paper

Advanced visualization techniques

- peridynamics + computer graphics
- peridynamics + visualization
- 5 papers (2 physically-based rendering and 3 for the extraction)
- Using 1 experimental paper

Methodology

Collection of data

Metric for the comparison

Comparison against experiments

Confidence of peridynamics models and simulations

Advanced visualization echniques

Conclusion and Outlook

¹https://webofknowledge.com/

METRIC FOR COMPARISON OF EXPERIMENTAL DATA

Methodology Collection of data

Metric for the comparison

Comparison against experiments

Confidence of peridynamics models and simulations

Advanced visualization techniques

Conclusion and Outlook

References

$R^2 \in [0, 1]$ correlation

- Obtain y-values from simulation and y-values from experiment at same x-values
- Do linear regression with y-values
- Use *r* value squared as confidence level

COMPARISON OF WAVE PROPAGATION AGAINST EXPERIMENTS

.

Application	В	S	Material	Exp
Stress wave propagation (half-plane)	\checkmark		Plastic polymer (CR-39)	[20]
Wave speed (Edge-on impact experiment)	\checkmark		ALON, PMMA	[76, 75, 74]
Split-Hopkinson pressure bar	\checkmark		Aluminum	[17, 10]
Wave dispersion and propagation		\checkmark	Sandstone	[82, 89]

Table 1: Applications for the comparison of wave propagation against experimental resuls. Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to experimental data, and Sim to simulation.

COMPOSITE

Application	В	s	Material	Exp	Sim
Interaction between a dynamically growing crack	\checkmark		Composite	[53]	[2]
Damage growth prediction (Six-bolt specimen)	\checkmark		Composite	[73]	[64]
Damage prediction (Center-cracked laminates)	\checkmark		Composite	[4, 48, 83, 8]	[49]
Dynamic tension test (prenoteched rectangular plate)	\checkmark		Composite	[43, 8]	[39]

Table 2: Applications of bond-based and state-based peridynamics for the comparison with experimental data. **Legend: B** refers to bond-based peridynamics, **S** refers to state-based peridynamics, **Exp** to experimental data, and **Sim** to simulation.

- Only quantitative comparison against experiment was done, e.g. crack pattern or crack branches.
- Only bond-based peridynamic models were applied.

STEEL/ALUMINUM

Application	В	S	Material	Exp	Sim
Crack growth (Kalthoff-Winkler)	\checkmark	\checkmark	Steel	[45, 47, 46]	[71, 3, 36, 90]
Dynamic fracture		\checkmark	Steel (4340)	[32]	[31]
Fracture (Compact tension test)	\checkmark		Aluminum,Steel	[59, 61, 7, 54]	[84, 88, 87]
Taylor impact test		\checkmark	Aluminum	[16, 44]	[29, 30, 3]
Ballistic impact test		\checkmark	Aluminum (6061-T6)	[81]	[79]

Table 3: Applications of bond-based and state-based peridynamics for the comparison with experimental data. Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to experimental data, and Sim to simulation.

CONCRETE

Application	В	s	Material	Exp	Sim
Lap-splice experiment 3-point bending beam Failure in a Barazilian disk under compression	√ √	√ √	Concrete Concrete Concrete	[33] [41, 14] [35]	[33] [35, 5] [38]

Table 4: Applications of bond-based and state-based peridynamics for the comparison with experimental data. **Legend: B** refers to bond-based peridynamics, **S** refers to state-based peridynamics, **Exp** to experimental data, and **Sim** to simulation.

GLASS

Application	В	S	Material	Exp	Sim
Dynamic crack propagation (prenotched thin plate) Impact damage with a thin polycarbonate backing Single crack paths (quenched glass plate) Multiple crack paths (quenched glass plate) Crack tip propagation speed Fast cracks in PMMA	\$ \$ \$ \$ \$ \$		Glass Glass Glass Glass Glass PMMA	[11, 24, 67] [26, 15, 6] [86, 69, 9] [70, 85] [11] [25]	[90, 37, 2] [40] [50] [50] [36, 90, 37] [2]
Tensile test	\checkmark		PMMA	[77]	[21]

Table 5: Applications of bond-based and state-based peridynamics for the comparison with experimental data. Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to experimental data, and Sim to simulation.

- Six papers comapred against the same experimental results: FP Bowden et al. "Controlled fracture of brittle solids and interruption of electrical current". In: *Nature* 216.5110 (1967), pp. 38–42.
- Only bond-based peridynamics was considered.

VARIOUS

Application	В	S	Material	Exp	Sim
Ruptures in Bio membranes		\checkmark	Bio membranes	[34]	[78]
Arctic engineering		\checkmark	Ice	[72]	[57]
Electronic packages	\checkmark		Graphene	[63]	[65]
Dynamic crack propagation	\checkmark		FGM (Epoxy/Soda-lime glass)	[51, 1, 52]	[19]

Table 6: Applications of bond-based and state-based peridynamics for the comparison with experimental data. Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to experimental data, and Sim to simulation.

- For arctic engineering three different speeds of the drill were compared.
- Confidence level heavily depends on the speed value.

RELATIVE ERROR FOR SCALAR OBSERVABLE

Figure 1: The plot shows the relation between the Young modulus *E* of the material and the relative error of the experimental result and the obtained observable in the simulation.

Table

Relative error

OVERVIEW RELATIVE ERROR

Application	Material	Observable	Rel. error	Exp	Sim
Edge-on impact experiment	ALON	Avg. propagation speed of primary wave front	$3.57 \cdot 10^{-2}$	[60]	[87]
Kalthoff-Winkler experiment	Steel	Crack initiation time	$-3.45 \cdot 10^{-2}$	[58]	[36]
Kalthoff-Winkler experiment	Steel	Crack propagation speed	0.14	[45, 68]	[12]
Crushing-brittle ice by a rotating cylinder	Ice	Mean force at 50 mm s ⁻¹	-0.74	[72]	[57]
Crushing-brittle ice by a rotating cylinder	Ice	Mean force at 130 mm s ⁻¹	-0.21	[72]	[57]
Crushing-brittle ice by a rotating cylinder	Ice	Mean force at 210 mm s ⁻¹	-0.25	[72]	[57]
Crushing-brittle ice by a rotating cylinder	Ice	Peak force at 50 mm s ⁻¹	-0.66	[72]	[57]
Crushing-brittle ice by a rotating cylinder	Ice	Peak force at 130 mm s ⁻¹	-0.12	[72]	[57]
Crushing-brittle ice by a rotating cylinder	Ice	Peak force at 210 mm s ⁻¹	0.29	[72]	[57]
Pre-cracked glass (step tensile loading)	Soda-lime	Max. crack propagation speed	$6.27 \cdot 10^{-2}$	[11]	[37]
Pre-cracked plate (step tensile loading)	Soda-lime	Max. crack propagation speed	-0.27	[11]	[90]
Pre-cracked plate (step tensile loading)	Soda-lime	Max. crack propagation speed (16 281 nodes)	0.29	[11]	[36]
Pre-cracked plate (step tensile loading)	Soda-lime	Max. crack propagation speed (4141 nodes)	0.48	[11]	[36]
Pre-cracked plate (step tensile loading)	Soda-lime	Max. crack propagation speed (refined)	0.71	[11]	[36]

Table 7: Relative error between the observable measured in the experiment and obtained in the simulation.

R^2 correlation for series of observable

Methodology

Comparison against experiments

Confidence of peridynamics models and simulations

Scalar observable

Series of obversable

Advanced visualization techniques

Conclusion and Outlook

References

Figure 2: The plot shows the relation between the Young modulus *E* of the material and the extracted correlation R^2 of the experimental plot and the plot obtained by simulations.

Table

OVERVIEW R² CORRELATION

Application	Material	Observable	R ²	Exp	Sim
Split-Hopkinson pressure bar	Aluminum	Strain vs time	0.99	[17]	[42]
Taylor impact test	Aluminum (6061-T6)	Norm diameter/length; strain vs stress	0.96	[44, 16]	[29]
Ballistic impact test	Aluminum (6061-T6)	Residual vel vs impact vel	0.99	[81]	[79]
Dynamic fracture	Steel (4340)	Strain vs stress	0.97	[32]	[31]
Compact tension test	Aluminum (D16AT)	Force vs CMOD	1	[54, 80]	[84]
Compact tension test	SAE 1020 steel	Crack path position	0.97	[61]	[87]
3-point bending	Concrete	Load vs CMD	0.61	[41]	[35]
3-point bending (D3)	Concrete	Load vs CMOD	0.85	[14]	[5]
3-point bending (D6)	Concrete	Load vs CMOD	0.89	[14]	[5]
3-point bending (D9)	Concrete	Load vs CMOD	0.77	[14]	[5]
3-point bending (D3 LPD-load)	Concrete	Load vs LPD	0.87	[14]	[5]
3-point bending (D6 LPD-load)	Concrete	Load vs LPD	0.83	[14]	[5]
3-point bending (D9 LPD-load)	Concrete	Load vs LPD	0.51	[14]	[5]
Fast crack growth	PMMA	Crack velocity vs time	0.72	[25]	[2]
Tensile test	PMMA	Poisson ratio vs time	0.65	[77]	[21]
3-point loading	FEM (Epoxy/Soda-lime glass)	Crack length vs time	0.99	[52]	[19]
Wave dispersion and propagation	Sandstone	Dispersion curves	0.93	[82]	[13]

Table 8: R^2 correlation between the series of observables between experiment and simulation. **Abbreviations**: crack mouth displacement (CMD), crack mouth opening displacement (CMOD), and load point displacement (LPD).

_

PHYSICALLY-BASED RENDERING

Wei Chen et al. "Peridynamics-Based Fracture Animation for Elastoplastic Solids". In: *Computer Graphics Forum* (2017), n/a–n/a. ISSN: 1467-8659

J. A. Levine et al. "A Peridynamic Perspective on Spring-mass Fracture". In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA '14. Copenhagen, Denmark: Eurographics Association, 2014, pp. 47–55

Methodology

Comparison against experiments

Confidence of peridynamics models and simulations

Advanced visualization techniques

Physically-based rendering

Extraction of additional attributes

Conclusion and Outlook

EXTRACTION OF FRAGMENTS

Methodology

Comparison against experiments

Confidence of peridynamics models and simulations

Advanced visualization techniques

Physically-based rendering

Extraction of additional attributes

Conclusion and Outlook

- David Littlewood, Stewart Silling, and Paul Demmie. "Identification of Fragments in a Meshfree Peridynamic Simulation". In: ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers. 2016, V009T12A071–V009T12A071
- Patrick Diehl et al. "Extraction of Fragments and Waves After Impact Damage in Particle-Based Simulations". In: Meshfree Methods for Partial Differential Equations VIII. Springer International Publishing, 2017, pp. 17–34

FRACTURE PROGRESSION

			Comparison aga experiments
	Setting	Growth velocity $m s^{-1}$	Confidence of peridynamics m and simulations
Veixing 65/her52	Exp	1000	Advanced visualization techniques
A1726-02 27856-02 27856-02 27856-02	SPH PD	1200 Mean: 1142 Median: 1144	Physically-base rendering
	I D	1 1 1 1 1 1 1 1 1 1	Estra ation of

Michael Bußler et al. "Visualization of fracture progression in peridynamics". In: Computers & Graphics 67 (2017), pp. 45–57. ISSN: 0097-8493

Extraction of additional attributes

SUMMARY

Methodology

Comparison against experiments

Confidence of peridynamics models and simulations

Advanced visualization techniques

Physically-based rendering

Extraction of additional attributes

Conclusion and Outlook

References

Application	В	S	Reference
Animation of brittle fracture	\checkmark		[55]
Fracture animation in elastoplastic solids		\checkmark	[18]
Waves after impact damage	\checkmark		[23]
Fracture progression	\checkmark	\checkmark	[12]
Extraction of fragments	\checkmark		[23, 56]

Table 9: Overview of applications of bond-based and state-based peridynamics in visualization of fracture in solids. **Legend**: *B* refers to bond-based peridynamics and *S* refers to state-based peridynamics.

- All these advances techniques are additional models.
- Validation against experiments is needed for these models.