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MOTIVATION

Adequacy of peridynamic models and simulations

One important key for the adequacy of a model is the confidence how
it compares with experimental data [27, 28].

Main objectives

§ Review the available experimental data
§ Provide an measurement for the confidence level
§ Advanced visualization techniques for additional comparison

against experiments
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COLLECTION OF DATA

Search in Web of Science1 for

Comparison against experiments

§ peridynamics + experiment
§ peridynamics + benchmark
§ 39 papers including comparison against experimental data
§ Using 52 experimental paper

Advanced visualization techniques

§ peridynamics + computer graphics
§ peridynamics + visualization
§ 5 papers (2 physically-based rendering and 3 for the extraction)
§ Using 1 experimental paper

1https://webofknowledge.com/
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METRIC FOR COMPARISON OF EXPERIMENTAL DATA
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§ Obtain y-values from simulation and y-values from experiment at
same x-values

§ Do linear regression with y-values
§ Use r value squared as confidence level
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COMPARISON OF WAVE PROPAGATION AGAINST
EXPERIMENTS

Application B S Material Exp Sim
Stress wave propagation (half-plane) X Plastic polymer (CR-39) [20] [62]
Wave speed (Edge-on impact experiment) X ALON,PMMA [76, 75, 74] [22, 66, 87]
Split-Hopkinson pressure bar X Aluminum [17, 10] [42]
Wave dispersion and propagation X Sandstone [82, 89] [13]

Table 1: Applications for the comparison of wave propagation against experimental resuls. Legend: B
refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to experimental data, and
Sim to simulation.



COMPOSITE

Application B S Material Exp Sim

Interaction between a dynamically growing crack X Composite [53] [2]
Damage growth prediction (Six-bolt specimen) X Composite [73] [64]
Damage prediction (Center-cracked laminates) X Composite [4, 48, 83, 8] [49]
Dynamic tension test (prenoteched rectangular plate) X Composite [43, 8] [39]

Table 2: Applications of bond-based and state-based peridynamics for the comparison with experimental
data. Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to
experimental data, and Sim to simulation.

Remarks

§ Only quantitative comparison against experiment was done, e.g.
crack pattern or crack branches.

§ Only bond-based peridynamic models were applied.



STEEL/ALUMINUM

Application B S Material Exp Sim

Crack growth (Kalthoff-Winkler) X X Steel [45, 47, 46] [71, 3, 36, 90]
Dynamic fracture X Steel (4340) [32] [31]
Fracture (Compact tension test) X Aluminum,Steel [59, 61, 7, 54] [84, 88, 87]
Taylor impact test X Aluminum [16, 44] [29, 30, 3]
Ballistic impact test X Aluminum (6061-T6) [81] [79]

Table 3: Applications of bond-based and state-based peridynamics for the comparison with experimental
data. Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to
experimental data, and Sim to simulation.



CONCRETE

Application B S Material Exp Sim

Lap-splice experiment X Concrete [33] [33]
3-point bending beam X X Concrete [41, 14] [35, 5]
Failure in a Barazilian disk under compression X Concrete [35] [38]

Table 4: Applications of bond-based and state-based peridynamics for the comparison with experimental
data. Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to
experimental data, and Sim to simulation.



GLASS

Application B S Material Exp Sim

Dynamic crack propagation (prenotched thin plate) X Glass [11, 24, 67] [90, 37, 2]
Impact damage with a thin polycarbonate backing X Glass [26, 15, 6] [40]
Single crack paths (quenched glass plate) X Glass [86, 69, 9] [50]
Multiple crack paths (quenched glass plate) X Glass [70, 85] [50]
Crack tip propagation speed X Glass [11] [36, 90, 37]
Fast cracks in PMMA X PMMA [25] [2]
Tensile test X PMMA [77] [21]

Table 5: Applications of bond-based and state-based peridynamics for the comparison with experimental
data. Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to
experimental data, and Sim to simulation.

Remarks

§ Six papers comapred against the same experimental results:
FP Bowden et al. “Controlled fracture of brittle solids and
interruption of electrical current”. In: Nature 216.5110 (1967),
pp. 38–42.

§ Only bond-based peridynamics was considered.



VARIOUS

Application B S Material Exp Sim

Ruptures in Bio membranes X Bio membranes [34] [78]
Arctic engineering X Ice [72] [57]
Electronic packages X Graphene [63] [65]
Dynamic crack propagation X FGM (Epoxy/Soda-lime glass) [51, 1, 52] [19]

Table 6: Applications of bond-based and state-based peridynamics for the comparison with experimental
data. Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to
experimental data, and Sim to simulation.

Remarks

§ For arctic engineering three different speeds of the drill were
compared.

§ Confidence level heavily depends on the speed value.
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RELATIVE ERROR FOR SCALAR OBSERVABLE

0 100 200 300

´0.5

0

0.5

[87]
[36]

[12]

[57]

[57]
[57]

[57]

[57]

[57]

[37]

[90]

[36]

[36]

[36]

E (GPa)

R
el

at
iv

e
er

ro
r

Aluminum/Steel

Concrete

Glass

Various

Figure 1: The plot shows the relation between the Young modulus E of the material and the relative error
of the experimental result and the obtained observable in the simulation.
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OVERVIEW RELATIVE ERROR

Application Material Observable Rel. error Exp Sim

Edge-on impact experiment ALON Avg. propagation speed of primary wave front 3.57 ¨ 10´2 [60] [87]
Kalthoff-Winkler experiment Steel Crack initiation time ´3.45 ¨ 10´2 [58] [36]
Kalthoff-Winkler experiment Steel Crack propagation speed 0.14 [45, 68] [12]
Crushing-brittle ice by a rotating cylinder Ice Mean force at 50 mm s´1 ´0.74 [72] [57]
Crushing-brittle ice by a rotating cylinder Ice Mean force at 130 mm s´1 ´0.21 [72] [57]
Crushing-brittle ice by a rotating cylinder Ice Mean force at 210 mm s´1 ´0.25 [72] [57]
Crushing-brittle ice by a rotating cylinder Ice Peak force at 50 mm s´1 ´0.66 [72] [57]
Crushing-brittle ice by a rotating cylinder Ice Peak force at 130 mm s´1 ´0.12 [72] [57]
Crushing-brittle ice by a rotating cylinder Ice Peak force at 210 mm s´1 0.29 [72] [57]
Pre-cracked glass (step tensile loading) Soda-lime Max. crack propagation speed 6.27 ¨ 10´2 [11] [37]
Pre-cracked plate (step tensile loading) Soda-lime Max. crack propagation speed ´0.27 [11] [90]
Pre-cracked plate (step tensile loading) Soda-lime Max. crack propagation speed (16 281 nodes) 0.29 [11] [36]
Pre-cracked plate (step tensile loading) Soda-lime Max. crack propagation speed (4141 nodes) 0.48 [11] [36]
Pre-cracked plate (step tensile loading) Soda-lime Max. crack propagation speed (refined) 0.71 [11] [36]

Table 7: Relative error between the observable measured in the experiment and obtained in the simulation.
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R2 CORRELATION FOR SERIES OF OBSERVABLE
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Figure 2: The plot shows the relation between the Young modulus E of the material and the extracted
correlation R2 of the experimental plot and the plot obtained by simulations.
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OVERVIEW R2 CORRELATION

Application Material Observable R2 Exp Sim

Split-Hopkinson pressure bar Aluminum Strain vs time 0.99 [17] [42]
Taylor impact test Aluminum (6061-T6) Norm diameter/length; strain vs stress 0.96 [44, 16] [29]
Ballistic impact test Aluminum (6061-T6) Residual vel vs impact vel 0.99 [81] [79]
Dynamic fracture Steel (4340) Strain vs stress 0.97 [32] [31]
Compact tension test Aluminum (D16AT) Force vs CMOD 1 [54, 80] [84]
Compact tension test SAE 1020 steel Crack path position 0.97 [61] [87]
3-point bending Concrete Load vs CMD 0.61 [41] [35]
3-point bending (D3) Concrete Load vs CMOD 0.85 [14] [5]
3-point bending (D6) Concrete Load vs CMOD 0.89 [14] [5]
3-point bending (D9) Concrete Load vs CMOD 0.77 [14] [5]
3-point bending (D3 LPD-load) Concrete Load vs LPD 0.87 [14] [5]
3-point bending (D6 LPD-load) Concrete Load vs LPD 0.83 [14] [5]
3-point bending (D9 LPD-load) Concrete Load vs LPD 0.51 [14] [5]
Fast crack growth PMMA Crack velocity vs time 0.72 [25] [2]
Tensile test PMMA Poisson ratio vs time 0.65 [77] [21]
3-point loading FEM (Epoxy/Soda-lime glass) Crack length vs time 0.99 [52] [19]
Wave dispersion and propagation Sandstone Dispersion curves 0.93 [82] [13]

Table 8: R2 correlation between the series of observables between experiment and simulation.
Abbreviations: crack mouth displacement (CMD), crack mouth opening displacement (CMOD), and load
point displacement (LPD).

Back



Methodology

Comparison against
experiments

Confidence of
peridynamics models
and simulations

Advanced
visualization
techniques

Physically-based
rendering

Extraction of
additional attributes

Conclusion and
Outlook

References

PHYSICALLY-BASED RENDERING

Wei Chen et al.
“Peridynamics-Based Fracture
Animation for Elastoplastic
Solids”. In: Computer Graphics
Forum (2017), n/a–n/a. ISSN:
1467-8659

J. A. Levine et al. “A Peridynamic
Perspective on Spring-mass
Fracture”. In: Proceedings of the
ACM SIGGRAPH/Eurographics
Symposium on Computer Animation.
SCA ’14. Copenhagen, Denmark:
Eurographics Association, 2014,
pp. 47–55
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EXTRACTION OF FRAGMENTS
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§ David Littlewood, Stewart Silling, and Paul Demmie.
“Identification of Fragments in a Meshfree Peridynamic
Simulation”. In: ASME 2016 International Mechanical Engineering
Congress and Exposition. American Society of Mechanical
Engineers. 2016, V009T12A071–V009T12A071

§ Patrick Diehl et al. “Extraction of Fragments and Waves After
Impact Damage in Particle-Based Simulations”. In: Meshfree
Methods for Partial Differential Equations VIII. Springer
International Publishing, 2017, pp. 17–34
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FRACTURE PROGRESSION

Setting Growth velocity m s´1

Exp 1000
SPH 1200
PD Mean: 1142, Median: 1144

Michael Bußler et al. “Visualization of fracture progression in
peridynamics”. In: Computers & Graphics 67 (2017), pp. 45–57. ISSN:
0097-8493
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SUMMARY

Application B S Reference

Animation of brittle fracture X [55]
Fracture animation in elastoplastic solids X [18]
Waves after impact damage X [23]
Fracture progression X X [12]
Extraction of fragments X [23, 56]

Table 9: Overview of applications of bond-based and state-based peridynamics in visualization of fracture
in solids. Legend: B refers to bond-based peridynamics and S refers to state-based peridynamics.

Remarks

§ All these advances techniques are additional models.
§ Validation against experiments is needed for these models.
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