Constitutive equations

e Scalar microstress w conjugate to d

w = awgijA) + o+ Cd,
— ~—

Wdiss
TWen

with & = &(A) and ¢ = {(A) positive-valued scalar functions.

e \ector microstress & conjugate to Vd

¢ Onl(A)
ovd
This is taken to be energetic, with no dissipative contribution.
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Governing pdes

1. Equilibrium equation:

( DivTy 4+ bos = 0, )

where bgg is a non-inertial body force.

2. Microforce balance:
The microforces w and & obey the balance,

DivE —w = 0.

This microforce balance, together with the thermodynamically consistent
constitutive equations for o and & gives the evolution equation for the
damage variable d,

C(A)d = <_8¢5;A) + Div (agég)> - @(A)> .

Since ¢ is positive-valued, the right hand side of the equation above must
be positive for d to be positive and the damage to increase monotonically.




Boundary and initial conditions

1. Boundary conditions for the pde governing the evolution of x:

TRnR — \fR on StR X [07 T].

2. Boundary conditions for the pde governing the evolution of d:

d=0 on&y x[0,T],
Vd-ng=0 onodB\ Sy x[0,T].

The Initial data Is taken as

x(X,0) =X, and d(X,0)=0. in B.
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Specialization of the constitutive equations

- Replace chain stretch with distortional effective stretch and allow for slight compressibility:

_ tr C . .
X =1/ rT distortional effective stretch J=detF  volumetric Jacobian

- N, L
* Entropy density: @ Na(A Ap) = —Nkpn K \/bﬁ > f+n (sinﬁhﬁﬂ =L (MTZ)

e N number of chains per unit reference volume

e 1, number of links in each chain

- Internal energy density: ( (Mo, J,d, Vd) = (1 —d)?e3 (N, J) + éR,nonIoc(VdD

1 1 . 1
érg()\b, J) = §Eb()\b —-1)° + §K(J - 1)27\ CR,nonIOC(Vd) = §5£ * |vd|*, A
E, = NnFE, — net bond stiffness agf — Nne{: — net bond dissoc. energy
\. K  —bulkmodulus ) \_ ¢ — intrinsic length scale .

O
- Bond deformation stretch still given by local free energy minimization f;ib = )
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Evolution equation for damage variable

e Scalar microforce:
=2(1 —d)e®( Ny, J) + €l + ¢d

de . - . L
el e Nneb net dissociation energy ¢ > 0 viscous regularization parameter

e Vector microforce: ¢ = ¢l /2Vd

e Microforce balance, Divé—w = 0:  (d = 2(1—d)e®(\y, J) —el +el 02Vd

e Toenforced € [0,1]:  ¢d = 2(1—d) <é2(>\b, J) — &l /2> —ef [d— 2Ad],

and to account for the irreversible nature of chain scission d > (), we introduce

H(t) £ max (£2(\y(s), J(s)) — el /2).

s€|0,t]

e Then the evolution equation for d may be written as

[}d = (2(1 —d)H — ¢l [d — (*Ad] >]
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Governing pdes

Equilibrium equation:

Evolution equation for d:

+ BCs and ICs

DivT: +b; =0

(d=(2(1 —d)yH — &l [d— (*Ad])

H(t) € max (9(\(s), J(s)) — el /2)

s€|0,t]
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Plane-stress simulation of single-edge-notch fracture of an elastomeric sheet
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Dimensions in mm

e Thickness: Imm; p=0.1mm

e Stretch rate 1 x 1073 /s

Material parameters

Go=Nkgd n E,=NnE, K ¢l =Nne 0 ¢

0.25 MPa 4 5 MPa 5MPa 2.5MJ/m® 100pum 20kPa-s
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Plane stress simulation of single-edge-notch fracture of an elastomeric sheet

Contours of damage
with highly damaged elements
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Single-edge-notch fracture of an elastomeric sheet

Contours of damage
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The length scale ¢ and mesh for the single-edge-notched specimen

A
damage
‘ (RN
s
20mm W 06
s he < 0/10
.”D a
in.?
no
v

e Actual values of ¢ in elastomeric materials are expected to be ¢ g 1um.
For he < ¢/10 — so that h. < 100nm, which is exceedingly small

e For modeling macroscopic-dimensioned specimens, several mm in length,
for pragmatic reasons we consider ¢ to be regularization parameter for
the gradient-damage theory.

e Corresponding to a small but computationally-tractable mesh size h. se-
lected for macroscopic-dimensioned specimens, a suitably large value
of £ = 100um has been chosen, and the value of el suitable reduced so

that
el x I~ G.,

where G, is the value of experimentally-measured macroscopic critical
energy release rate for a given material. 70



