Constitutive equations

• Scalar microstress ϖ conjugate to \dot{d}

$$\varpi = \underbrace{\frac{\partial \hat{\psi}_{\mathsf{R}}(\mathbf{\Lambda})}{\partial \mathsf{d}}}_{\varpi_{\mathsf{on}}} + \underbrace{\alpha + \zeta \dot{\mathsf{d}}}_{\varpi_{\mathsf{diss}}},$$

with $\alpha = \hat{\alpha}(\Lambda)$ and $\zeta = \hat{\zeta}(\Lambda)$ positive-valued scalar functions.

• Vector microstress ξ conjugate to $\nabla \dot{d}$

$$oldsymbol{\xi} = rac{\partial \hat{\psi}_{ extsf{R}}(oldsymbol{\Lambda})}{\partial
abla \mathsf{d}}.$$

This is taken to be energetic, with no dissipative contribution.

Governing pdes

1. Equilibrium equation:

$$\mathsf{Div}\,\mathsf{T}_{\scriptscriptstyle\mathsf{R}}+\mathsf{b}_{0\scriptscriptstyle\mathsf{R}}=\mathsf{0},$$

where \mathbf{b}_{0R} is a non-inertial body force.

2. Microforce balance:

The microforces ϖ and ξ obey the balance,

$$\mathsf{Div}\boldsymbol{\xi}-\varpi=0.$$

This microforce balance, together with the thermodynamically consistent constitutive equations for ϖ and ξ gives the evolution equation for the damage variable d,

$$\left(\hat{\zeta}(\mathbf{\Lambda}) \dot{d} = \left\langle -\frac{\partial \hat{\psi}_{\mathrm{R}}(\mathbf{\Lambda})}{\partial d} + \mathrm{Div} \left(\frac{\partial \hat{\psi}_{\mathrm{R}}(\mathbf{\Lambda})}{\partial \nabla d} \right) - \hat{\alpha}(\mathbf{\Lambda}) \right\rangle.$$

Since ζ is positive-valued, the right hand side of the equation above must be positive for \dot{d} to be positive and the damage to increase monotonically.

Boundary and initial conditions

1. Boundary conditions for the pde governing the evolution of χ :

$$egin{aligned} oldsymbol{\chi} & oldsymbol{\chi} & ext{on } \mathcal{S}_{oldsymbol{\chi}} imes [0,T], \ oldsymbol{\mathsf{T}}_{\mathsf{R}} oldsymbol{\mathsf{n}}_{\mathsf{R}} & oldsymbol{\mathsf{M}} oldsymbol{\mathcal{S}}_{\mathsf{t}_{\mathsf{R}}} imes [0,T]. \end{aligned}
ight\}$$

2. Boundary conditions for the pde governing the evolution of d:

$$\begin{split} \dot{\mathbf{d}} &= 0 \quad \text{on } \mathcal{S}_{\mathbf{d}} \times [0,T], \\ \nabla \mathbf{d} \cdot \mathbf{n}_{\mathrm{R}} &= 0 \quad \text{on } \partial \mathbf{B} \setminus \mathcal{S}_{\mathbf{d}} \times [0,T]. \end{split}$$

The initial data is taken as

$$\chi(X,0) = X$$
, and $d(X,0) = 0$. in B.

Specialization of the constitutive equations

Replace chain stretch with distortional effective stretch and allow for slight compressibility:

$$\bar{\lambda} = \sqrt{\frac{\operatorname{tr}\bar{\mathbf{C}}}{3}}$$

 $\bar{\lambda} = \sqrt{\frac{\mathrm{tr}\,\mathbf{C}}{2}}$ distortional effective stretch $J = \det\mathbf{F}$ volumetric Jacobian

$$J = \det \mathbf{F}$$

• Entropy density:
$$(\eta_{\mathrm{R}} = \hat{\eta}_{\mathrm{R}}(\bar{\lambda}, \lambda_b) = -Nk_B n \left[\left(\frac{\bar{\lambda} \lambda_b^{-1}}{\sqrt{n}} \right) \beta + \ln \left(\frac{\beta}{\sinh \beta} \right) \right]$$
 $\beta = \mathcal{L}^{-1} \left(\frac{\bar{\lambda} \lambda_b^{-1}}{\sqrt{n}} \right)$

- N number of chains per unit reference volume
- n number of links in each chain

• Internal energy density:
$$\hat{\varepsilon}_{\mathrm{R}}(\lambda_b,J,d,\nabla d) = (1-d)^2 \hat{\varepsilon}_{\mathrm{R}}^0(\lambda_b,J) + \hat{\varepsilon}_{\mathrm{R,nonloc}}(\nabla d).$$

$$\begin{split} \hat{\varepsilon}_{\mathrm{R}}^0(\lambda_b,J) &= \frac{1}{2}\bar{E}_b(\lambda_b-1)^2 + \frac{1}{2}K(J-1)^2,\\ \bar{E}_b &= N\,n\,E_b \qquad \text{net bond stiffness}\\ K &\qquad - \text{bulk modulus} \end{split}$$

Bond deformation stretch still given by local free energy minimization

$$\frac{\partial \psi_{\rm R}}{\partial \lambda_b} = 0.$$

Evolution equation for damage variable

• Scalar microforce:

$$\varpi = 2(1 - d)\varepsilon^{0}(\lambda_{b}, J) + \varepsilon_{R}^{f} + \zeta \dot{d}$$

 $arepsilon_{\mathrm{R}}^f \stackrel{\mathrm{def}}{=} Nn arepsilon_b^f$ net dissociation energy $\zeta>0$ viscous regularization parameter

- Vector microforce: $\boldsymbol{\xi} = \varepsilon_{\mathrm{R}}^f \ell^2 \nabla \mathrm{d}$
- Microforce balance, $\mathrm{Div} \boldsymbol{\xi} \boldsymbol{\varpi} = \mathbf{0}$: $\zeta \dot{\mathsf{d}} = 2(1-d)\varepsilon^0(\lambda_b,J) \varepsilon_\mathsf{R}^f + \varepsilon_\mathsf{R}^f\ell^2\nabla \mathsf{d}$
- To enforce $\mathsf{d} \in [0,1]$: $\zeta \dot{d} = 2(1-\mathsf{d}) \left\langle \hat{\varepsilon}_\mathsf{R}^0(\lambda_b,J) \varepsilon_\mathsf{R}^f/2 \right\rangle \varepsilon_\mathsf{R}^f \left[d \ell^2 \Delta \mathsf{d} \right],$ and to account for the irreversible nature of chain scission $\dot{\mathsf{d}} \geq 0$, we introduce

$$\mathcal{H}(t) \stackrel{\text{def}}{=} \max_{s \in [0,t]} \left\langle \hat{\varepsilon}_{\mathsf{R}}^{0}(\lambda_{b}(s), J(s)) - \varepsilon_{\mathsf{R}}^{f}/2 \right\rangle.$$

Then the evolution equation for d may be written as

$$\left[\zeta \dot{d} = \left\langle 2(1-d)\mathcal{H} - \varepsilon_{\mathrm{R}}^{f} \left[d - \ell^{2} \Delta \mathsf{d} \right] \right\rangle.$$

Governing pdes

Equilibrium equation:

$$\mathrm{Div}\,\mathbf{T}_{\scriptscriptstyle \mathsf{R}}+\mathbf{b}_{\scriptscriptstyle \mathsf{R}}=\mathbf{0}$$

Evolution equation for d:

$$\zeta \dot{d} = \left\langle 2(1-d)\mathcal{H} - \varepsilon_{\mathrm{R}}^{f} \left[d - \ell^{2} \Delta d \right] \right\rangle$$

$$\mathcal{H}(t) \stackrel{\mathsf{def}}{=} \max_{s \in [0,t]} \left\langle \hat{\varepsilon}_{\mathsf{R}}^{0}(\lambda_b(s), J(s)) - \varepsilon_{\mathsf{R}}^{f}/2 \right\rangle$$

+ BCs and ICs

Plane-stress simulation of single-edge-notch fracture of an elastomeric sheet

Dimensions in mm

- Thickness: 1mm; $\rho = 0.1 \,\mathrm{mm}$
- Stretch rate $1 \times 10^{-3}/s$

Material parameters

$G_0 = Nk_B\vartheta$	n	$\bar{E}_b = NnE_b$	K	$\varepsilon_{\mathrm{R}}^f = Nn\varepsilon_b^f$	ℓ	ζ
0.25 MPa	4	$5\mathrm{MPa}$	5 MPa	$2.5\mathrm{MJ/m^3}$	$100\mu\mathrm{m}$	$20\mathrm{kPa\cdot s}$

Single-edge-notch fracture of an elastomeric sheet

Contours of damage

The length scale ℓ and mesh for the single-edge-notched specimen

- Actual values of ℓ in elastomeric materials are expected to be $\ell \lesssim 1 \mu \text{m}$. For $h_e \lesssim \ell/10$ so that $h_e \lesssim 100 \text{nm}$, which is *exceedingly small*.
- For modeling macroscopic-dimensioned specimens, several mm in length, for pragmatic reasons we consider \(\ell\) to be regularization parameter for the gradient-damage theory.
- Corresponding to a small but computationally-tractable mesh size h_e selected for macroscopic-dimensioned specimens, a suitably large value of $\ell=100\mu{\rm m}$ has been chosen, and the value of $\varepsilon_{\rm R}^f$ suitable reduced so that

$$\varepsilon_{\rm R}^f imes \ell pprox G_c,$$

where G_c is the value of experimentally-measured macroscopic critical energy release rate for a given material.