Possible failure mechanisms in an elastomer

 The classical inverse Langevin-type free energy function based on a change in entropy, has a

singularity as
$$\bar{\lambda} \to \lambda_{\scriptscriptstyle L}.$$

- Physically, as $\bar{\lambda} \to \lambda_{\rm L}$, the polymer will fracture. There are two possible modes of fracture:
 - The monomers in the chains are stretched and ruptured
 - chain scission mode
 - Idea goes back to Lake and Thomas (1967).
 - The crosslinks in the polymer network are stretched and ruptured
 - crosslink failure mode.

Arruda-Boyce model is based on a classical freely-jointed model for a single chain

(Kuhn and Grün, 1942)

- A polymer molecule behaves like a chain of freely-jointed segments (Kuhn segments)
- The Kuhn segments are assumed to be rigid, but free to rotate about the joints
- number of Kuhn segments in a chain • n
- L length of every Kuhn segment
- $r_0 = \sqrt{n}L$ rest length of chain
- end-to-end distance of stretched chain

•
$$\lambda = \frac{r}{r_0}$$
 chain stretch
$$\psi(\lambda, \vartheta) = -\vartheta \eta(\lambda) = \vartheta \, nk_B \left[\frac{\lambda}{\sqrt{n}} \beta + \ln \left(\frac{\beta}{\sinh \beta} \right) \right]$$

$$\beta = \mathcal{L}^{-1} \left(\frac{\lambda}{\sqrt{n}} \right)$$

- Deformation response is adequately modeled
- However bond-stretching is not modeled
- The model does not say anything about chain-scission and fracture

Accounting for internal energy due to stretching of Kuhn segments

(Mao, Talamini, Anand, 2017 EML)

- A polymer molecule behaves like a chain of freely jointed segments (Kuhn segments)
- However each Kuhn segment is not rigid but stretchable.
- Every Kuhn segment has the same rest length L and deformed length I.

$$\lambda = \frac{r}{r_0}$$
 chain stretch

$$\lambda_b = \frac{l}{L}$$
 bond stretch

Accounting for internal energy due to bond-stretching of a single chain

$$\lambda = rac{r}{r_0}$$
 chain stretch $\frac{C_{ ext{lain in}}}{r_{ ext{est state}}}$ Classic freely jointed chain model $\frac{F}{r_0}$ New model $\frac{F}{r_0}$ New model $\frac{F}{r_0}$ \frac{F}

Configurational entropy of a chain:

$$\hat{\eta}(\lambda, \lambda_b) = -nk_B \left[\frac{\lambda \lambda_b^{-1}}{\sqrt{n}} \beta + \ln \left(\frac{\beta}{\sinh \beta} \right) \right] \qquad \beta = \mathcal{L}^{-1} \left(\frac{\lambda \lambda_b^{-1}}{\sqrt{n}} \right)$$

Internal energy of a chain:

$$\hat{\varepsilon}(\lambda_b) = \frac{1}{2} n E_b (\lambda_b - 1)^2$$
 E_b ... bond stiffness

- Helmholtz free energy: $\psi = \hat{\psi}(\lambda, \lambda_b) = \frac{1}{2} n E_b \left(\lambda_b 1\right)^2 + n k_B \vartheta \left[\left(\frac{\lambda \lambda_b^{-1}}{\sqrt{n}}\right) \beta + \ln \left(\frac{\beta}{\sinh \beta}\right) \right]$
- Bond stretch is determined by free energy minimization: $\left(\begin{array}{c} \frac{\partial \hat{\psi}(\lambda, \lambda_b)}{\partial \lambda_b} = 0. \end{array}\right)$

Deformation response of a single chain

$$\psi = \hat{\psi}(\lambda, \lambda_b) = \frac{1}{2} n E_b (\lambda_b - 1)^2 + n k_B \vartheta \left[\left(\frac{\lambda \lambda_b^{-1}}{\sqrt{n}} \right) \beta + \ln \left(\frac{\beta}{\sinh \beta} \right) \right]$$

Singularity is suppressed

Scission of a single chain

Accounting for internal energy of bond deformation allows for modeling of chain scission:

- \bullet ε_b^f dissociation energy of a Kuhn segment
- $n \varepsilon_h^f$ dissociation energy of chain

Damage model for scission of a single chain

Introduce:

- $d \in [0, 1]$, damage variable
- ϖ , microforce that expends power over d

Free energy:
$$\hat{\psi}(\lambda, \lambda_b, \mathsf{d}) = (1 - \mathsf{d})^2 \hat{\varepsilon}(\lambda_b) - \vartheta \hat{\eta}(\lambda, \lambda_b)$$

 $(1-\mathrm{d})^2$ is a degradation function for the internal energy

Microforce:

$$\varpi = \underbrace{\frac{\partial \hat{\psi}}{\partial \mathbf{d}}}_{\text{energetic}} + \underbrace{n\varepsilon_b^f + \zeta \dot{\mathbf{d}}}_{\text{dissipative}}$$

Microforce balance (from virtual power arguments):

$$\zeta \dot{\mathsf{d}} = 2(1 - \mathsf{d}) \left\langle \hat{\varepsilon}(\lambda_b) - n\varepsilon_b^f/2 \right\rangle + n\varepsilon_b^f \mathsf{d}$$

Damage model for scission of a single chain

Back to a continuum model

$\mathbf{x} = \boldsymbol{\chi}(\mathbf{X}, t),$	motion;
$\mathbf{F} = \nabla \mathbf{\chi}, J = \det \mathbf{F} > 0,$	deformation gradient;
$\bar{F} = J^{-1/3}F,$	disortional part of F ;
$C = F^{T}F$,	right Cauchy-Green tensor;
$ar{C} = ar{F}^{\scriptscriptstyle op} ar{F} = J^{-2/3} C$,	distortional part of C;
$T_{R},T_{R}F^{\scriptscriptstyle op}=FT_{R}^{\scriptscriptstyle op}$	Piola stress;
$T_{\scriptscriptstyleRR} = F^{-1} T_{\scriptscriptstyleR}$,	second Piola stress;
$arepsilon_{R},$	internal energy density per unit reference volume;
$\eta_{ extsf{R}}$,	entropy density per unit reference volume;
ψ_{R} ,	free energy density per unit reference volume;
$\lambda_b > 0$	effective bond stretch (an internal variable);
$d(X,t) \in [0,1],$	damage variable or phase-field variable;
$\overline{\omega}$	scalar microstress conjugate to d;
ξ	vector microstress conjugate to $\nabla \dot{d}$.

Constitutive equations

Free energy

This is given by

$$\psi_{\scriptscriptstyle\mathsf{R}} = \hat{\psi}_{\scriptscriptstyle\mathsf{R}}(oldsymbol{\Lambda}),$$

with Λ the list

$$\mathbf{\Lambda} = \{\mathsf{C}, \lambda_b, \mathsf{d}, \nabla \mathsf{d}\}.$$

Second Piola stress. Piola stress

The second Piola stress is given by

$$\mathsf{T}_{\mathtt{RR}} = 2\,rac{\partial \hat{\psi}_{\mathtt{R}}(\pmb{\Lambda})}{\partial \mathbf{C}},$$

and the Piola stress by

$$T_{R} = FT_{RR}$$
.

Implicit equation for the effective bond stretch

The thermodynamic requirement

$$\frac{\partial \hat{\psi}_{\mathrm{R}}(\mathbf{\Lambda})}{\partial \lambda_b} = 0,$$

reflects the fact that the actual value of the effective bond stretch λ_b adopted by the material is the one that *minimizes* the free energy. This equation serves as an implicit equation to determine λ_b in terms of the other constitutive variables.