Possible failure mechanisms in an elastomer
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e The classical inverse Langevin-type free energy function based on a

change in entropy, has a

singularity as A — AL

e Physically, as A — ), the polymer will fracture. There are two possible

modes of fracture:
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— The monomers in the chains are stretched and ruptured

— chain scission mode
— |ldea goes back to Lake and Thomas (1967).

— The crosslinks in the polymer network are stretched and ruptured

— crosslink failure mode.

|
crass ink
|

cragzlnk Tailura

51



(0 9) = —0(\) = Dnks [—5 fn (

Arruda-Boyce model is based on a classical freely-jointed model for a single chain

(Kuhn and Grun, 1942)

e A polymer molecule behaves like a chain of freely-jointed segments (Kuhn segments)

e The Kuhn segments are assumed to be rigid, but free to rotate about the joints

o n number of Kuhn segments in a chain

e L length of every Kuhn segment

e 7o =+/nL rest length of chain

o r end-to-end distance of stretched chain

o \—= — chain stretch
o

A
/n
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e Deformation response is adequately
modeled
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" e However bond-stretching is not modeled

® The model does not say anything about
chain-scission and fracture
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Accounting for internal energy due to stretching of Kuhn segments

(Mao, Talamini, Anand, 2017 EML)

e A polymer molecule behaves like a chain of freely jointed segments (Kuhn segments)
e However each Kuhn segment is not rigid but stretchable.

e Every Kuhn segment has the same rest length L and deformed length .

Classic freely jointed chain model
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Accounting for internal energy due to bond-stretching of a single chain

r . Chain in Classic freely jointed chain model
)\ — Chall’l Stret Ch rest state F e F
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Configurational entropy of a chain:

A1 A1
i) = [Soon(ggg)] a=e ()

Internal energy of a chain:

1 .
E(Ny) = §nEb()\b —1)? E, ... bond stiffness
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Bond stretch is determined by free energy minimization: Gw 0.
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Detormation response of a single chain
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Scission of a single chain

Accounting for internal energy of bond deformation allows for
modeling of chain scission:

Chain scission
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o 5£ dissociation energy of a Kuhn segment

o ne{j dissociation energy of chain



Damage model for scission of a single chain

Introduce: e d € [0, 1], damage variable

e o, microforce that expends power over d

Free energy: (X, M\, d) = (1 — d)28(\p) — 97(\, \p)

((1 —d)? is a degradation function for the internal energD

A

Microforce: o — 9y +nel + ¢d
od —— ——
. dissipative

energetic

Microforce balance (from virtual power arguments) :

Cga —2(1 —d) <é(>\b) - ne,{/2> +neld )
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Damage model for scission of a single chain
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Back to a continuum model

X = x(X,1), motion;

F=Vx, J=detF >0, deformation gradient;

F=J"13F, disortional part of F;

C=F'F right Cauchy-Green tensor;
C=FF=.J"2/3C, distortional part of C;

Te, TRFT =FT] Piola stress;

T =F 1T, second Piola stress;

Er, internal energy density per unit reference volume;
Nr, entropy density per unit reference volume;

YR, free energy density per unit reference volume;
Ap >0 effective bond stretch (an internal variable);
d(X,t) € [0,1], damage variable or phase-field variable;

w scalar microstress conjugate to d;

[5 vector microstress conjugate to Vd. ]
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Constitutive equations

* Free energy
This is given by

with A the list
A ={C, \y,d, Vd}.
e Second Piola stress. Piola stress
The second Piola stress is given by

On(A)

Ter =2 :
0C

and the Piola stress by
Ty = FTgs.

e |Implicit equation for the effective bond stretch
The thermodynamic requirement

O (A)
O

= 0,

reflects the fact that the actual value of the effective bond stretch A,
adopted by the material is the one that minimizes the free energy. This
equation serves as an implicit equation to determine A, in terms of the
other constitutive variables.



