Asymmetric bend tests: Load-displacement comparison

ν	S^c	\mathcal{U}	$\epsilon_{ ext{crit}}^c$	ψ_*	ℓ	ζ
0.2	3.1	0.7	2.5×10^{-4}	2.1	3	40

GPa - MPa k	$$ (J/m 3	mm	kPa-s
-------------	--------------	----	-------

E

38

Material Parameters

\overline{E}	18	GPa
ν	0.18	_
$ u \\ S^c$	2.5	MPa
\varkappa	0.7	_
$\epsilon_{ extsf{crit}}^c$	4.9×10^{-4}	_
ψ_*	3.2	kJ/m ³
ℓ	4	mm
ζ	40	kPa-s

Experimentally observed crack pattern

Phase-field crack (our model)

Phase field crack path overlaid against the experimentally observed crack pattern

Concluding remarks

- We have formulated a new gradient-damage theory for modeling quasibrittle fracture of concrete.
- Our theory goes beyond the existing phase-field theories for brittle fracture in that the theory:
 - allows for some amount of craze-type inelasticity prior to damage initiation, and that
 - it overcomes the need to decompose the energy into positive and negative contributions.
- The theory has been implemented numerically in ABAQUS as a user element subroutine (UEL).
- The theory has reasonably good predictive capabilities.
- Much more needs to be done.

A gradient-damage theory for fracture of elastomeric materials

Lallit Anand with Yunwei Mao and Brandon Talamini

WFM 2020

Fracture of elastomers

Griffith, 1921

Crystalline materials Break a layer of atoms Toughness ~1 J/m^2

Lake-Thomas 1967

Elastomeric materials Snap a layer of chains Toughness ~10-1000 J/m^2

(From Yang & Suo, 2018)

- Ideal fracture by chain-scission of elastomeric materials with strong covalent crosslinks — in the spirit of Lake and Thomas (1967)
- Neglect any viscoelasticity or Mullin-type effects.

Modeling deformation of elastomeric materials

• For an isotropic material at a temperature ϑ the free-energy function is a symmetric function of the principal stretches λ_i (i=1,2,3):

$$\psi_{\mathsf{R}} = \hat{\psi}(\lambda_1, \lambda_2, \lambda_3, \vartheta), \qquad J = \lambda_1 \lambda_2 \lambda_3 = 1.$$

Effective stretch,

$$\bar{\lambda} \stackrel{\text{def}}{=} \frac{1}{\sqrt{3}} \sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2},$$

and consider a special free-energy,

$$\hat{\psi}_{\mathsf{R}}(ar{\lambda};artheta).$$

• Since $\psi_{\rm R} = \varepsilon_{\rm R} - \vartheta \, \eta_{\rm R}$,

$$\psi_{\mathsf{R}}(\bar{\lambda},\vartheta) = \varepsilon_{\mathsf{R}}(\bar{\lambda},\vartheta) - \vartheta \, \eta_{\mathsf{R}}(\bar{\lambda},\vartheta).$$

 For elastomeric materials the internal energy is classically assumed to be independent of stretch and a function of the temperature only,

$$\varepsilon_{\mathsf{R}} = \hat{\varepsilon}_{\mathsf{R}}(\vartheta) \,,$$

and that the entropy is a separable function of temperature and the effective stretch

$$\eta_{\mathsf{R}} = f(\vartheta) + g(\bar{\lambda}).$$

Arruda-Boyce free energy function

A widely used free energy function is

$$\psi_{\mathrm{R}} = -\theta \eta_{\mathrm{R}} = G_0 \, \lambda_L^2 \left[\left(\frac{\bar{\lambda}}{\lambda_L} \right) \beta + \ln \left(\frac{\beta}{\sinh \beta} \right) \right], \qquad \beta \stackrel{\mathrm{def}}{=} \mathcal{L}^{-1} \left(\frac{\bar{\lambda}}{\lambda_L} \right),$$

where \mathcal{L}^{-1} is the function inverse of the Langevin function $\mathcal{L}(z) \stackrel{\text{def}}{=} \coth z - z^{-1}$.

- Two material parameters:
 - Rubbery modulus,

$$G_0 = Nk_B\vartheta,$$

N — number of chains per unit reference volume.

Network locking stretch,

$$\lambda_L = \sqrt{n}$$

n — number of links (Kuhn-segments) in each polymer chain.

- Generalized shear modulus: $G = G_0 \left(\frac{\lambda_L}{3\overline{\lambda}} \right) \mathcal{L}^{-1} \left(\frac{\overline{\lambda}}{\lambda_L} \right)$.
- Since $\mathcal{L}^{-1}(z) \to \infty$ as $z \to 1$, the modulus $G \to \infty$ as $\bar{\lambda} \to \lambda_L$.

This response is pathological.