Asymmetric bend tests : Load-displacement comparison
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L-shaped panel test
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L-shaped panel test
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L-shaped panel test

Experimentally observed crack
pattern

Phase-field crack (our model)
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L-shaped panel test

Phase field crack path overlaid against the
experimentally observed crack pattern

45



Concluding remarks

e We have formulated a new gradient-damage theory for modeling quasi-
brittle fracture of concrete.

e QOur theory goes beyond the existing phase-field theories for brittle fracture
in that the theory:

— allows for some amount of craze-type inelasticity prior to damage
initiation, and that

— it overcomes the need to decompose the energy into positive and
negative contributions.

e The theory has been implemented numerically in ABAQUS as a user ele-
ment subroutine (UEL).

e The theory has reasonably good predictive capabilities.

e Much more needs to be done.
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Fracture of elastomers

Griffith, 1921 Lake-Thomas 1967

Crystalline materials Elastomeric materials
Break a layer of atoms Snap a layer of chains
Toughness ~1 J/mA2 Toughness ~10-1000 J/mA2

(From Yang & Suo, 2018)

e |deal fracture by chain-scission of elastomeric materials with strong
covalent crosslinks — in the spirit of Lake and Thomas (1967)

e Neglect any viscoelasticity or Mullin-type effects.
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Modeling deformation of elastomeric materials

e For an isotropic material at a temperature 1 the free-energy function is a
symmetric function of the principal stretches \; (i = 1,2, 3):

A

U = (A1, A2, Az, ), J = A3 = 1.

o Effective stretch,

1
N ﬁ\/A% + A2+ M,
and consider a special free-energy,
Yr(A; ).

e Since Yr = € — VMg,

7vDR(S‘? Q9) — gR(j‘a 19) - T977F%(5‘7 79)

e [or elastomeric materials the internal energy is classically assumed to be
independent of stretch and a function of the temperature only,

Er = ég(ﬁ) )

and that the entropy is a separable function of temperature and the effec-
tive stretch

= f(0) +g(N).
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Arruda-Boyce free energy function

e A widely used free energy function is

_ _ A 5 def A
oo (Sron()] e ()

where £~ is the function inverse of the Langevin function £(z) X coth z—
—1
Z .

e [wo material parameters:

— Rubbery modulus,
GO — NkBrl?,
N — number of chains per unit reference volume.
— Network locking stretch,

AL =+Vn

n — number of links (Kuhn-segments) in each polymer chain.

A
e Generalized shear modulus: G = Gy AL L~ —).
3\ AL

‘e Since L71(z) - c0as z— 1, themodulus G — ocoas X\ — )\Lj

This response is pathological.




