Virtual velocities

e Consider the fields | |
X, F¢, €%, d

as virtual velocities and denote the virtual fields by
V= (x,F¢ é,d).
We require that they satisfy
(VX)F~ ! =F°Fe !l 4 eFeNeFe L, d>0.
e \\We refer to a macroscopic virtual field V as rigid if it satisfies
(Vx) = QF,
with € a spatially constant skew tensor, together with

~

Fe=QF¢ ¢&=0, d=0.
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Principle ot virtual power

)/\/e)(’[(l:)7 V) — / tR(IlR) * )ZdCLR —I_ / bR ° Xd/UR —I_ / g(nR) a dCLR,
oP P oP

Wint(P, V) = /(S6 F€ 4+ 76¢ + od + £ - v&) dvg,
P

e The principle of virtual power consists of two basic requirements:

(V1) Given any part P,

Wext(P, V) = Win(P, V) for all generalized virtual velocities V.

(V2) Given any part P and a rigid virtual velocity V,

Wint(P,V) = 0 whenever V is a rigid macroscopic virtual velocity.
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Consequences of principle of virtual power

(a) Macroscopic force and moment balances: The stress Win(P, V) = /P(S e+ od + € V) do

T+ LT gepe—T  satisfies T,F' =FT,,

and satisfies a macroscopic force balance and a macroscopic traction
condition,

DlV TR —I_ bOR — O and tR(nR) — TRIIR,

so Ty represents the classical Piola stress.

— The Cauchy stress T
T=J1'T.F ¢€sym.
— The elastic second Piola stress:
e def

T¢ = JF¢ 'TF¢ T € sym,

— The Mandel stress:

Me d:ef CeTe — JGFeTTFe_T. i3



Consequences of principle of virtual power

WerlP.V) = [

oP

tR(l’lR) : Xdaq:g —|_ /

by - x dvg + / £(ng) d dag,
P

oP

Wint(P, V) = /(Se F€ 4+ 16 4+ od + £- Va) dug

P

(b) A first microscopic force balance for crazing, €°:
Let

Jd:ef JEME€ : N°€.

denote a resolved tensile stress. Then

o =T,

(c) A second microscopic force balance and traction condition for the damage

d and its gradient Vd:

DivE —w =0, and £(ng) = &€-np.
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Actual external and internal expenditures of power

e The actual external expenditure of power:

WorlP) = [(Toma) - icdaq + [ 5o, + [ (€ no)dda

oP P oP
e Since the stress power S¢: F¢ may be alternatively written as,
: 1 .
SC:F¢=—-J°T°: C°,
2
the actual internal expenditure of power may be written as

1 : : :
Wint(P) = /(§JCTe :C® + mé€ 4+ wd + & Vd) dvg.
P
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Free-energy imbalance under isothermal conditions

e Under isothermal conditions the free-energy imbalance is the statement:

/P% dvg < Wext(P) — Wint(P>a

\

. 1 . . .
/le — <§JCT€:Ce + me€ 4+ wd + &- Vd)] dvg < 0,
P

\

| . . .
wR—§JCT€:C6—7TéC—wd—€-Vd < 0.
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Constitutive equations
(1) Free energy:

Ve = g(d)io + .02 |[Vd]?,  with

2

N~ defect energy
N elastic energy

\ - J/
N/

1 2
Yo = J¢ | GIES)? + (K — §G) (IrE®)? 4 (1 — 32) S°°

~~

“‘undamaged” energy

(i) G > 0and K > 0 are the shear and bulk moduli, respectively.

(i) S°e° represents an inelastic work expended due to crazing and s a
fraction in the range s € (0,1). We assume that the fraction 5%
s dissipated, while the balance (1 — »)S5€€ is stored in the material
due to craze-disordering,

SCe¢ = 25°€° + Sl — J:tr)Scei

energy dissipated due to crazing  gefect energy stored due to craze disordering

(ili) g(d) = (1 —d)? is a monotonically decreasing degradation function.

(iv) The parameter 1, is an energy per unit volume associated with the
evolution of damage.

(v) The parameter ¢ > 0 is a length scale that controls the spread of the
diffuse damage zone.
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Constitutive equations

(2) Mandel stress:

Me = Jo-! (2%2) = g(d) 2GE¢ + K (trE°)1]

which is symmetric.

(i) The spectral decomposition of the Mandel stress is

3
MGZZO'Z'éZ‘@é@' with o1 > 09 > 03,
1=1

where {o;|t = 1, 2,3} are the principal values and {¢;|i = 1, 2,3} are
the principal directions of M¢.

(i) Craze inelasticity will be taken to occur in the maximum principal
stress direction eq.
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Constitutive equations
(3) Evolution equation for F¢
F¢=D°F°  with F¢X,0)=1, where
D =¢°¢; ®e;, and
o {> 0 possible ifoy >0 and oy = 1(o1 + 02+ 03) >0,

0 otherwise.

The craze strain is defined by
def |
() % / é(s) ds.
0

e With S° > 0 denoting a resistance to craze flow, we introduce a yield

condition:

f d:ef o1 — g(d)SC S 0.

¢ | oading-unloading conditions may be expressed in the Kuhn-Tucker form,
€ >0, f<0, €f=0,
e Consistency condition:
ef=0 when f=0.

The consistency condition serves to determine €€ whenever it is not zero.
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Constitutive equations

(3) Evolution equation for the damage variable d:

e Const. egns. for the microstress w and &:

@ = —2(1—d) J° (0 (Tee) + 0°() ) +2(1 — d)ep, + 2.d + (

J/

IV

o undamaged energy

\ . 4

o,
od

dissipative

energetic=

£= 2,.0°Vd
\——

O
ovVd

energetic=

e Substitution of these const. egns. in the microforce balance
DivE —w =0,

yield the following evolution equation for d,

Ccd — (21— d) (o — ) — 20 (d — €2 Ad>>]
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